|本期目录/Table of Contents|

[1]贾明汭,张认认,李新宏,等.氢气输送管道微观失效的分子动力学仿真研究*[J].中国安全生产科学技术,2023,19(9):123-128.[doi:10.11731/j.issn.1673-193x.2023.09.018]
 JIA Mingrui,ZHANG Renren,LI Xinhong,et al.Molecular dynamics simulation study on microscopic failure of hydrogen pipeline[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2023,19(9):123-128.[doi:10.11731/j.issn.1673-193x.2023.09.018]
点击复制

氢气输送管道微观失效的分子动力学仿真研究*
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
19
期数:
2023年9期
页码:
123-128
栏目:
职业安全卫生管理与技术
出版日期:
2023-09-30

文章信息/Info

Title:
Molecular dynamics simulation study on microscopic failure of hydrogen pipeline
文章编号:
1673-193X(2023)-09-0123-06
作者:
贾明汭张认认李新宏刘亚洲韩子月
(1.西安建筑科技大学 资源工程学院,陕西 西安 710055;
2.西安建筑科技大学 机电工程学院,陕西 西安 710055)
Author(s):
JIA Mingrui ZHANG Renren LI Xinhong LIU Yazhou HAN Ziyue
(1.School of Resource Engineering,Xi’an University of Architecture and Technology,Xi’an Shaanxi 710055,China;
2.School of Mechanical Engineering,Xi’an University of Architecture and Technology,Xi’an Shaanxi 710055,China)
关键词:
分子动力学氢气输送管道力学性能共近邻分析微观失效
Keywords:
molecular dynamics hydrogen pipeline mechanical property common neighbor analysis microscopic failure
分类号:
X937
DOI:
10.11731/j.issn.1673-193x.2023.09.018
文献标志码:
A
摘要:
为保证氢气输送管道服役的安全性,从微观角度研究氢气环境中管线钢发生失效行为的内在机理以及典型力学性能的变化规律。通过分子动力学模拟方法对不同氢原子浓度下的α-铁模拟体系的微观失效行为进行研究,揭示微观状态下管线钢原子之间的力学性能及失效机理,并对模拟体系进行共近邻分析,观察和分析拉伸加载过程中α-铁模拟体系晶体结构的变化规律。研究结果表明:在拉伸过程中,随着掺入氢原子的浓度增大,体系的抗拉强度、杨氏模量及最大应力处应变普遍降低,α-铁体系更容易发生失效;同时,BCC结构的转变是α-铁体系发生失效的主要原因。研究结果有助于深入理解氢致管道微观失效机理,为保障氢气输送安全提供理论参考。
Abstract:
To ensure the safety of hydrogen pipeline service,the inherent mechanism of failure behavior and the change law of typical mechanical properties of pipeline steel in the hydrogen environment were studied from the microscopic perspective.The microscopic failure behavior of α-iron simulation system under different hydrogen atom concentrations was studied by molecular dynamics (MD) simulation,and the mechanical properties and failure mechanism of pipeline steel atoms in microscopic state were revealed.The common neighbor analysis (CNA) was used to observe and analyze the variation of crystal structure of the α-iron simulation system during the tensile loading process.The results show that the tensile strength,Young’s modulus and strain at the maximum stress of the system generally decrease with the increase of the concentration of hydrogen atoms in the tensile process.The failure of α-iron system is mainly caused by the transformation of BCC structure.The research results are helpful to understand the microscopic failure mechanism of hydrogen-induced pipelines and provide a theoretical reference for ensuring the safety of hydrogen transportation.

参考文献/References:

[1]周宁,倪鹏飞,李雪,等.管道结构对氢/空预混气体爆炸特性影响研究[J].中国安全生产科学技术,2021,17(4):65-71. ZHOU Ning,NI Pengfei,LI Xue,et al.Study on influence of pipe structure on explosion characteristics of hydrogen-air premixed gas[J].Journal of Safety Science and Technology,2021,17(4):65-71.
[2]ZAPUKHLYAK V,MELNYCHENKO Y,OKIPNYI I,et al.Reliability assurance of gas-hydrogen mixture transportation by gas pipeline system[J].Procedia Structural Integrity,2022,36:378-385.
[3]李新宏,贾明汭,韩子月,等.穿越城市生活区的天然气管道泄漏连锁爆燃后果评估研究[J].中国安全生产科学技术,2022,18(8):183-188. LI Xinhong,JIA Mingrui,HAN Ziyue,et al.Study on sequence assessment of leakage and chain deflagration of natural gas pipeline crossing urban living area[J].Journal of Safety Science and Technology,2022,18(8):183-188.
[4]王旭,丁珏,杨小权,等.高压储氢系统泄漏爆炸事故的动力学演化[J].中国安全生产科学技术,2023,19(3):150-156. WANG Xu,DING Yu,YANG Xiaoquan,et al.Dynamic evolution of leakage and explosion accident in high pressure hydrogen storage system[J].Journal of Safety Science and Technology,2023,19(3):150-156.
[5]ZHANG H,TIAN Z.Failure analysis of corroded high-strength pipeline subject to hydrogen damage based on FEM and GA-BP neural network[J].International Journal of Hydrogen Energy,2022,47(7):4741-4758.
[6]CHENG X Y,ZHANG H X.A new perspective on hydrogen diffusion and hydrogen embrittlement in low-alloy high strength steel[J].Corrosion Science,2020,174:108800.
[7]KANEZAKI T,NARAZAKI C,MINE Y,et al.Effects of hydrogen on fatigue crack growth behavior of austenitic stainlesssteels[J].International Journal of Hydrogen Energy,2008,33(10):2604-2619.
[8]WANG C,ZHANG J,LIU C,et al.Study on hydrogen embrittlement susceptibility of X80 steel through in-situ gaseous hydrogen permeation and slow strain rate tensile tests[J].International Journal of Hydrogen Energy,2023,48(1):243-256.
[9]昝娜,丁桦,骆小鹏,等.晶粒尺寸对高锰奥氏体TWIP钢氢脆行为的影响[J].中国冶金,2016,26(1):23-30. ZAN Na,DING Hua,LUO Xiaopeng,et al.Effect of grain size on hydrogen embrittlement of high Mn austenitic TWIP steel[J].China Metallurgy,2016,26(1):23-30.
[10]徐涛龙,何恭震,张毅,等.氢原子渗透对管线钢微裂纹扩展的影响研究[J].西南石油大学学报(自然科学版),2021,43(6):54-61. XU Taolong,HE Gongzhen,ZHANG Yi,et al.Effect of hydrogen atom permeation on microcrack propagation of pipeline steel[J].Journal of Southwest Petroleum University(Science & Technology Edition),2021,43(6):54-61.
[11]沈海军,付光俊.铝氢脆破坏微观机制的分子动力学研究[J].强度与环境,2010,37(4):22-27. SHEN Haijun,FU Guangjun.The MD simulation of hydrogen embrittlement fracture for aluminum[J].Structure and Environment Engineering,2010,37(4):22-27.
[12]KUOPANPORTTI P,HAYWARD E,FU C C,et al.Interatomic Fe-H potential for irradiation and embrittlement simulations[J].Computational Materials Science,2016,111:525-531.
[13]MEYER R,ENTEL P.Martensite-austenite transition and phonon dispersion curves of Fe1-xNix studied by molecular-dynamics simulations[J].Physical review B,1998,57(9):5140.
[14]RAMASUBRAMANIAM A,ITAKURA M,CARTER E A.Interatomic potentials for hydrogen in α-iron based on density functional theory[J].Physical Review B,2009,79(17):174101.
[15]潘金生,范毓殿.核材料物理基础[M].北京:化学工业出版社,2007:112.
[16]XU T H,ZHU Z Q,GENG S F,et al.Molecular dynamics study of effect of hydrogen atoms on mechanical properties of α-Fe nanowires[J].Physics Letters A,2017,381(37):3222-3227.
[17]柏智文,丁志刚,周爱龙,等.α-Fe单晶拉伸变形热-动力学的分子动力学模拟[EB/OL].(2023-03-23)[2023-04-21].https://www.ams.org.cn/clyj/CN/10.11900/0412.1961.2022.00606.
[18]XIE H X,YU T,FANG W,et al.Strain-rate-induced BCC-to-HCP phase transformation of Fe nanowires[J].Chinese Physics B,2016,25(12):365-370.

相似文献/References:

[1]林海飞,刘静波,严敏,等.CO2/CH4在煤储层中扩散规律的分子动力学模拟[J].中国安全生产科学技术,2017,13(1):84.[doi:10.11731/j.issn.1673-193x.2017.01.014]
 LIN Haifei,LIU Jingbo,YAN Min,et al.Molecular dynamics simulation on diffusion rules of CO2/CH4 in coal reservoir[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(9):84.[doi:10.11731/j.issn.1673-193x.2017.01.014]
[2]文虎,唐瑞,张铎,等.CO在烟煤中吸附与扩散的分子模拟研究*[J].中国安全生产科学技术,2022,18(7):95.[doi:10.11731/j.issn.1673-193x.2022.07.014]
 WEN Hu,TANG Rui,ZHANG Duo,et al.Molecular simulation study on adsorption and diffusion of CO in bituminous coal[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(9):95.[doi:10.11731/j.issn.1673-193x.2022.07.014]
[3]王宇恒,史波波,赵鹏翔,等.复合惰气在采空区遗煤中竞争吸附的分子动力学模拟研究*[J].中国安全生产科学技术,2022,18(9):82.[doi:10.11731/j.issn.1673-193x.2022.09.012]
 WANG Yuheng,SHI Bobo,ZHAO Pengxiang,et al.Study on molecular dynamics simulation of competitive adsorption of compound inert gas in residual coal of goaf[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(9):82.[doi:10.11731/j.issn.1673-193x.2022.09.012]
[4]苏东洋,唐一博,刘洪刚,等.PFC-APG-SA水成膜泡沫防治油液储运火灾实验研究*[J].中国安全生产科学技术,2023,19(3):137.[doi:10.11731/j.issn.1673-193x.2023.03.020]
 SU Dongyang,TANG Yibo,LIU Honggang,et al.Experimental study on prevention and control of oil storage and transportation fire by PFC-APG-SA aqueous film-forming foam[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2023,19(9):137.[doi:10.11731/j.issn.1673-193x.2023.03.020]
[5]张政,葛少成,孙丽英,等.SDS对烟煤润湿性能和机理的分子模拟研究*[J].中国安全生产科学技术,2023,19(4):86.[doi:10.11731/j.issn.1673-193x.2023.04.012]
 ZHANG Zheng,GE Shaocheng,SUN Liying,et al.Molecular simulation study on wettability performance and mechanism of SDS on bituminous coal[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2023,19(9):86.[doi:10.11731/j.issn.1673-193x.2023.04.012]

备注/Memo

备注/Memo:
收稿日期: 2023-04-25
* 基金项目: 陕西省高校科协青年人才托举计划项目(20220429)
作者简介: 贾明汭,硕士研究生,主要研究方向为氢气输送管道安全与风险防控。
通信作者: 张认认,硕士,助理工程师,主要研究方向为油气管柱/道安全可靠性评估。
更新日期/Last Update: 2023-10-12