|本期目录/Table of Contents|

[1]邵良杉,毕圣昊,王彦彬,等.基于ISSA-ELM的煤与瓦斯突出危险等级预测*[J].中国安全生产科学技术,2023,19(9):76-82.[doi:10.11731/j.issn.1673-193x.2023.09.011]
 SHAO Liangshan,BI Shenghao,WANG Yanbin,et al.Prediction of coal and gas outburst risk level based on ISSA-ELM[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2023,19(9):76-82.[doi:10.11731/j.issn.1673-193x.2023.09.011]
点击复制

基于ISSA-ELM的煤与瓦斯突出危险等级预测*
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
19
期数:
2023年9期
页码:
76-82
栏目:
职业安全卫生管理与技术
出版日期:
2023-09-30

文章信息/Info

Title:
Prediction of coal and gas outburst risk level based on ISSA-ELM
文章编号:
1673-193X(2023)-09-0076-07
作者:
邵良杉毕圣昊王彦彬赵硕嫱
(1.辽宁理工学院,辽宁 锦州 121010;
2.辽宁工程技术大学 工商管理学院,辽宁 葫芦岛 125105)
Author(s):
SHAO Liangshan BI Shenghao WANG Yanbin ZHAO Shuoqiang
(1.Liaoning Institute of Science and Engineering,Jinzhou Liaoning 121010,China;
2.School of Business Administration,Liaoning Technical University,Huludao Liaoning 125105,China)
关键词:
矿山安全煤与瓦斯突出预测主成分分析法改进麻雀搜索算法极限学习机
Keywords:
mine safety coal and gas outburst prediction principal component analysis (PCA) improved sparrow search algorithm (ISSA) extreme learning machine (ELM)
分类号:
X936
DOI:
10.11731/j.issn.1673-193x.2023.09.011
文献标志码:
A
摘要:
为提高煤与瓦斯突出危险等级预测的准确性,提出改进麻雀搜索算法(ISSA)优化极限学习机(ELM)的煤与瓦斯突出预测模型。首先,选用60组煤与瓦斯突出数据作为数据样本,采用主成分分析法(PCA)对其影响因素进行降维处理。然后,利用ISSA算法优化ELM算法的参数,建立ISSA-ELM模型。最后,选取样本后15组作为测试样本来验证模型的有效性,并与其他模型进行对比。研究结果表明:ISSA-ELM模型具有预测准确率更高、收敛速度更快和稳定性更佳等优点。研究结果可为煤与瓦斯突出危险等级准确判别提供参考。
Abstract:
To improve the accuracy of coal and gas outburst risk level prediction,a coal and gas outburst prediction model with improved sparrow search algorithm (ISSA) optimized extreme learning machine (ELM) was proposed.Firstly,60 groups of coal and gas outburst data were selected as data samples,and the dimensionality reduction processing of their influencing factors was conducted by principal component analysis (PCA).Then,the parameters of ELM algorithm were optimized by ISSA algorithm,and the ISSA-ELM model was established.Finally,the last 15 groups of samples were selected as test samples to verify the validity of the model,and it was compared with other models.The results show that the ISSA-ELM model has the advantages of higher prediction accuracy,faster convergence,and better stability.The research results can provide a reference for the accurate determination of coal and gas outburst risk level.

参考文献/References:

[1]BI S H,SHAO L S,QI Z H,et al.Prediction of coal mine gas emission based on hybrid machine learning model[J].Earth Science Informatics,2023,16(1):501-513.
[2]MA Y K,NIE B S,HE X Q,et al.Mechanism investigation on coal and gas outburst:an overview[J].International Journal of Minerals,Metallurgy and Materials,2020(27):872-887.
[3]张超林,王恩元,王奕博,等.近20年我国煤与瓦斯突出事故时空分布及防控建议[J].煤田地质与勘探,2021,49(4):134-141. ZHANG Chaolin,WANG Enyuan,WANG Yibo,et al.Spatial-temporal distribution of outburst accidents from 2001 to 2020 in China and suggestions for prevention and control[J].Coal Geology & Exploration,2021,49(4):134-141.
[4]LI X L,YUAN M,YU H.Prediction of coal and gas outburst grade based on factor analysis and SVM model[C]//Proceedings of the 2019 International Conference on Robotics:Association for Computing Machinery,2019.
[5]付华,王馨蕊,王志军,等.基于PCA和PSO-ELM的煤与瓦斯突出软测量研究[J].传感技术学报,2014,27(12):1710-1715. FU Hua,WANG Xinrui,WANG Zhijun,et al.Research on the soft sensor of coal and gas outburst based on PCA and PSO-ELM[J].Chinese Journal of Sensors and Actuators,2014,27(12):1710-1715.
[6]马晟翔,李希建.基于因子分析与BP神经网络的煤与瓦斯突出预测[J].矿业安全与环保,2019,46(2):70-74. MA Shengxiang,LI Xijian.Prediction of coal and gas outburst based on factor analysis and BP neural network[J].Mining Safety & Environmental Protection,2019,46(2):70-74.
[7]ZHOU Z Y,JI H D,YANG X F.Illumination correction of dyed fabric based on extreme learning machine with improved ant lion optimizer[J].Color Research & Application,2022,47(4):1065-1077.
[8]ZHANG L,SHI C L,NIU J,et al.DOA estimation for HFSWR target based on PSO-ELM[J].IEEE Geoscience and Remote Sensing Letters,2021(19):1-5.
[9]GHAREHCHOPOGH F S,NAMAZI M,EBRAHIMI L,et al.Advances in sparrow search algorithm:a comprehensive survey[J].Archives of Computational Methods in Engineering,2023,30(1):427-455.
[10]XIE X A,FU G A,XUE Y A,et al.Risk prediction and factors risk analysis based on IFOA-GRNN and apriori algorithms:application of artificial intelligence in accident prevention[J].Process Safety and Environmental Protection,2019(122):169-184.
[11]曹博,白刚,李辉.基于PCA-GA-BP神经网络的瓦斯含量预测分析[J].中国安全生产科学技术,2015,11(5):84-90. CAO Bo,BAI Gang,LI Hui.Prediction of gas content based on PCA-GA-BP neural network [J].Journal of Safety Science and Technology,2015,11(5):84-90.
[12]魏国营,裴蒙.基于PCA-AHPSO-SVR的煤层瓦斯含量预测研究[J].中国安全生产科学技术,2019,15(3):69-74. WEI Guoying,PEI Meng.Prediction of coal seam gas content based on PCA-AHPSO-SVR[J].Journal of Safety Science and Technology,2019,15(3):69-74.
[13]XUE J K,SHEN B.A novel swarm intelligence optimization approach:sparrow search algorithm[J].Systems Science & Control Engineering,2020,8(1):22-34.
[14]孙琪,于永进,王玉彬,等.采用改进鲸鱼算法的配电网综合优化[J].电力系统及其自动化学报,2021,33(5):22-29. SUN Qi,YU Yongjin,WANG Yubin,et al.Comprehensive optimization of distribution network using improved whale optimization algorithm[J].Proceedings of the CSU-EPSA,2021,33(5):22-29.
[15]KAMARUZAMAN A F,ZAIN A M,YUSUF S M,et al.Levy flight algorithm for optimization problems-a literature review[J].Applied Mechanics & Materials,2021,33(5):22-29.
[16]HUANG G B,ZHU Q Y,SIEW C K.Extreme learning machine:theory and applications[J].Neurocomputing,2006,70(1/3):489-501.
[17]YU Y,LI H T,SUN S L,et al.PM2.5 concentration forecasting through a novel multi-scale ensemble learning approach considering intercity synergy[J].Sustainable Cities and Society,2022(85):104049.
[18]ALBADRA M AA,TIUNA S.Extreme learning machine:a review[J].International Journal of Applied Engineering Research,2017,12(14):4610-4623.

相似文献/References:

[1]潘红洁,许开立.基于矿山安全专家系统安全信息采集及特征研究[J].中国安全生产科学技术,2011,7(3):109.
 PAN Hong-jie,XU Kai-li.Study on the information collection and safety characteristics used in mine safety Expert system[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2011,7(9):109.
[2]张黔生,谢贤平,吴劭星,等.矿山企业安全管理交互式模糊综合评价决策支持系统设计[J].中国安全生产科学技术,2010,6(1):125.
 ZHANG Qian-sheng,Xie Xian-ping,WU Shao-xing,et al.Design of an interactive fuzzy comprehensive evaluation decision support system for safety management of mine enterprises[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2010,6(9):125.
[3]曾晟,杜雪明,孙冰.基于GLM模糊评价在煤矿安全中的应用[J].中国安全生产科学技术,2013,9(11):91.[doi:10.11731/j.issn.1673-193x.2013.11.015]
 ZENG Sheng,DU Xue ming,SUN Bing.Application of fuzzy evaluation based on GLM in coal mine safety[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(9):91.[doi:10.11731/j.issn.1673-193x.2013.11.015]
[4]念其锋,施式亮,李润求.基于网络分析和联系熵的煤与瓦斯突出预测研究[J].中国安全生产科学技术,2014,10(2):22.[doi:10.11731/j.issn.1673-193x.2014.02.004]
 NIAN Qi feng,SHI Shi liang,LI Run qiu.Study on coal and gas outburst prediction based on analytic network process and connection entropy[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(9):22.[doi:10.11731/j.issn.1673-193x.2014.02.004]
[5]刘成敏,刘红芳,王海宁,等.某矿井通风系统优化及其可视化模型的构建[J].中国安全生产科学技术,2014,10(9):89.[doi:10.11731/j.issn.1673-193x.2014.09.015]
 LIU Cheng-min,LIU Hong-fang,WANG Hai-ning,et al.Optimization of mine ventilation system and construction of visual model[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(9):89.[doi:10.11731/j.issn.1673-193x.2014.09.015]
[6]马海涛,刘宁武,王云海,等.金属矿山采空区灾害防治技术研究综述[J].中国安全生产科学技术,2014,10(10):75.[doi:10.11731/j.issn.1673-193x.2014.10.012]
 MA Hai-tao,LIU Ning-wu,WANG Yun-hai,et al.Review on research status of controlling techniques for goaf disaster in metal mine[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(9):75.[doi:10.11731/j.issn.1673-193x.2014.10.012]
[7]杨明,张帆.煤层倾角对采空区流场及瓦斯分布的影响研究[J].中国安全生产科学技术,2014,10(11):34.[doi:10.11731/j.issn.1673-193x.2014.11.006]
 YANG Ming,ZHANG Fan.Study on influence of coal seam dip angle to the air flow field and gas distribution in goaf[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(9):34.[doi:10.11731/j.issn.1673-193x.2014.11.006]
[8]赵丹,陈帅,潘竞涛.基于FTA的矿井监控预警诊断知识表示及推理机制[J].中国安全生产科学技术,2015,11(6):40.[doi:10.11731/j.issn.1673-193x.2015.06.006]
 ZHAO Dan,CHEN Shuai,PAN Jing-tao.Knowledge representation and reasoning mechanism of mine monitoring warning diagnostic based on FTA[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2015,11(9):40.[doi:10.11731/j.issn.1673-193x.2015.06.006]
[9]张学博,张帆.“U+L”型通风综采面合理挡风帘长度确定[J].中国安全生产科学技术,2016,12(1):163.[doi:10.11731/j.issn.1673-193x.2016.01.031]
 ZHANG Xuebo,ZHANG Fan.Determination on reasonable length of wind curtain for ‘U+L’ type ventilation in fully mechanized face[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(9):163.[doi:10.11731/j.issn.1673-193x.2016.01.031]
[10]肖晓春,樊玉峰,吴迪,等.组合煤岩力学性质与声-电荷信号关系研究[J].中国安全生产科学技术,2018,14(2):126.[doi:10.11731/j.issn.1673-193x.2018.02.020]
 XIAO Xiaochun,FAN Yufeng,WU Di,et al.Study on relationship between mechanical properties and acoustic emission-charge signals of combined coal-rock[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(9):126.[doi:10.11731/j.issn.1673-193x.2018.02.020]

备注/Memo

备注/Memo:
收稿日期: 2022-07-31
* 基金项目: 国家自然科学基金项目(71771111);辽宁省教育厅高校科研项目(LJKZ0359);葫芦岛市哲学社会科学研究课题(HLDSKY2023045)
作者简介: 邵良杉,博士,教授,主要研究方向为矿业系统工程。
通信作者: 毕圣昊,硕士研究生,主要研究方向为数据预测、数据分析。
更新日期/Last Update: 2023-10-12