[1]张培森,李复兴,朱慧聪,等.2008—2020年煤矿事故统计分析及防范对策[J].矿业安全与环保,2022,49(1):128-134.
ZHANG Peisen,LI Fuxing,ZHU Huicong,et al.Statistical analysis and prevention countermeasures of coal mine accidents from 2008 to 2020[J].Mining Safety & Environmental Protection,2022,49(1):128-134.
[2]何俊,刘林兵,唐一举.基于线性二次指数平滑法的瓦斯含量预测[J].煤炭科学技术,2014,42(12):48-50,61.
HE Jun,LIU Linbing,TANG Yiju.Gas content prediction based on linear double exponential smooth method[J].Coal Science and Technology,2014,42(12):48-50,61.
[3]邓君.基于灰色理论的煤与瓦斯突出危险性预测及防控技术研究[D].湘潭:湖南科技大学,2019.
[4]王鹏,伍永平,王栓林,等.矿井瓦斯浓度Lagrange-ARIMA实时预测模型研究[J].煤炭科学技术,2019,47(4):141-146.
WANG Peng,WU Yongping,WANG Shuanlin,et al.Study on Lagrange-ARIMA real-time prediction model of mine gas concentration[J].Coal Science and Technology,2019,47(4):141-146.
[5]李金生.基于ARIMA时间序列的瓦斯涌出量预测研究[J].陕西煤炭,2020,39(S2):6-10.
LI Jinsheng.Prediction of gas emission rate based on ARIMA time series[J].Shaanxi Coal,2020,39(S2):6-10.
[6]郭思雯,陶玉帆,李超.基于时间序列的瓦斯浓度动态预测[J].工矿自动化,2018,44(9):20-25.
GUO Siwen,TAO Yufan,LI Chao.Dynamic prediction of gas concentration based on time series[J].Journal of Mine Automation,2018,44(9):20-25.
[7]范京道,黄玉鑫,闫振国,等.ARIMA-SVM组合模型驱动下的瓦斯浓度预测研究[J].工矿自动化,2022,48(9):134-139.
FAN Jingdao,HUANG Yuxin,YAN Zhenguo,et al.Research on gas concentration prediction driven by ARIMA-SVM combined model[J].Journal of Mine Automation,2022,48(9):134-139.
[8]赖祥威,夏云霓,郑万波,等.基于集成学习的改进灰色瓦斯浓度序列预测[J].中国安全生产科学技术,2021,17(7):16-21.
LAI Xiangwei,XIA Yunni,ZHENG Wanbo,et al.Improved grey prediction of gas concentration sequence based on integrated learning[J].Journal of Safety Science and Technology,2021,17(7):16-21.
[9]肖鹏,谢行俊,双海清,等.小波-极限学习机在瓦斯涌出量时变序列预测中的应用[J].西安科技大学学报,2020,40(5):839-845.
XIAO Peng,XIE Xingjun,SHUANG Haiqing,et al.Application of wavelet-extreme learning machine in time-varying series prediction of gas emission quantity[J].Journal of Xi’an University of Science and Technology,2020,40(5):839-845.
[10]郝治朝.煤矿隐伏断层定量预测方法与应用研究[D].北京:中国矿业大学(北京),2021.
[11]刘超,雷晨,李树刚,等.基于CNN-GRU的瓦斯浓度预测模型及应用[J].中国安全生产科学技术,2022,18(9):62-68.
LIU Chao,LEI Chen,LI Shugang,et al.Prediction model of gas concentration based on CNN-GRU and its application[J].Journal of Safety Science and Technology,2022,18(9):62-68.
[12]李树刚,马莉,潘少波,等.基于循环神经网络的煤矿工作面瓦斯浓度预测模型研究[J].煤炭科学技术,2020,48(1):33-38.
LI Shugang,MA Li,PAN Shaobo,et al.Research on prediction model of gas concentration based on RNN in coal mining face[J].Coal Science and Technology,2020,48(1):33-38.
[13]刘剑桥.基于改进LSTM循环神经网络瓦斯数据时间序列预测研究[D].徐州:中国矿业大学,2018.
[14]张新建,刘锋,李贤功.基于小波降噪和循环神经网络的煤矿瓦斯浓度预测[J].煤炭技术,2020,39(9):145-148.
ZHANG Xinjian,LIU Feng,LI Xiangong.Coal mine gas concentration prediction based on wavelet denoising and recurrent neural network[J].Coal Technology,2020,39(9):145-148.
[15]谢谦,董立红,吴雪菲.基于多源数据融合的煤矿工作面瓦斯浓度预测[J].中国安全生产科学技术,2022,18(11):71-76.
XIE Qian,DONG Lihong,WU Xuefei.Prediction of gas concentration in coal mining face based on multi-source data fusion[J].Journal of Safety Science and Technology,2022,18(11):71-76.
[16]赵辉,杨赛,岳有军,等.基于小波分解-卷积神经网络和支持向量回归的短期负荷预测[J].科学技术与工程,2021,21(25):10718-10724.
ZHAO Hui,YANG Sai,YUE Youjun,et al.Short-term load forecasting of convolutional neural network support vector regression using wavelet decomposition[J].Science Technology and Engineering,2021,21(25):10718-10724.
[17]梁运培,栗小雨,李全贵,等.基于CS-LSTM的工作面瓦斯浓度智能预测研究[J].矿业安全与环保,2022,49(4):80-86.
LIANG Yunpei,LI Xiaoyu,LI Quangui,et al.Research on intelligent prediction of gas concentration in working face based on CS-LSTM[J].Mining Safety & Environmental Protection,2022,49(4):80-86.
[18]CHAUDHARI S,MITHAL V,POLATKAN G,et al.An attentive survey of attention models[J].ACM Transactionson Intelligent Systems and Technology,2021,12(5):53.
[1]吴轩.减阻剂对管道内流动结构及安全性影响研究[J].中国安全生产科学技术,2015,11(5):51.[doi:10.11731/j.issn.1673-193x.2015.05.008]
WU Xuan.Influence on flow structures and safety of pipeline by drag-reducing additives[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2015,11(9):51.[doi:10.11731/j.issn.1673-193x.2015.05.008]
[2]余琼芳,徐静,杨艺.基于CNN_LSTM模型的复杂支路故障电弧检测*[J].中国安全生产科学技术,2022,18(4):204.[doi:10.11731/j.issn.1673-193x.2022.04.029]
YU Qiongfang,XU Jing,YANG Yi.Fault arc detection of complex branch based on CNN_LSTM model[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(9):204.[doi:10.11731/j.issn.1673-193x.2022.04.029]
[3]曹亚利,李振雷,刘旭东,等.基于卷积神经网络的冲击地压预警方法研究*[J].中国安全生产科学技术,2022,18(10):101.[doi:10.11731/j.issn.1673-193x.2022.10.015]
CAO Yali,LI Zhenlei,LIU Xudong,et al.Research on early-warning method of rockburst based on convolutional neural network[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(9):101.[doi:10.11731/j.issn.1673-193x.2022.10.015]
[4]李波,李鹏,高莲,等.基于PCA-VMD-CNN的输电线路覆冰重量预测模型*[J].中国安全生产科学技术,2022,18(10):216.[doi:10.11731/j.issn.1673-193x.2022.10.032]
LI Bo,LI Peng,GAO Lian,et al.Prediction model for weight of ice coating on transmission line based on PCA-VMD-CNN[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(9):216.[doi:10.11731/j.issn.1673-193x.2022.10.032]
[5]李子奇,蒋柱虎,王力,等.基于深度学习的工程结构损伤识别研究进展[J].中国安全生产科学技术,2022,18(12):43.[doi:10.11731/j.issn.1673-193x.2022.12.006]
LI Ziqi,JIANG Zhuhu,WANG Li,et al.Research progress in damage identification of engineering structure based on deep learning[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(9):43.[doi:10.11731/j.issn.1673-193x.2022.12.006]
[6]凌晓,王昕越,郭凯,等.基于UNet模型燃气管道高后果区分割方法研究*[J].中国安全生产科学技术,2024,20(4):157.[doi:10.11731/j.issn.1673-193x.2024.04.022]
LING Xiao,WANG Xinyue,GUO Kai,et al.Research on segmentation method for high-consequence areas of gas pipeline based on UNet model[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2024,20(9):157.[doi:10.11731/j.issn.1673-193x.2024.04.022]
[7]王文标,时启衡,郝友维.基于改进SqueezeNet的火焰识别算法*[J].中国安全生产科学技术,2024,20(8):19.[doi:10.11731/j.issn.1673-193x.2024.08.003]
WANG Wenbiao,SHI Qiheng,HAO Youwei.Flame recognition algorithm based on improved SqueezeNet[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2024,20(9):19.[doi:10.11731/j.issn.1673-193x.2024.08.003]
[8]梁学栋,王霞.考虑多利益相关群体偏好冲突的应急响应协同决策研究*[J].中国安全生产科学技术,2024,20(10):46.[doi:10.11731/j.issn.1673-193x.2024.10.006]
LIANG Xuedong,WANG Xia.Research on collaborative decision-making of emergency response considering preference conflicts among multiple stakeholder groups[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2024,20(9):46.[doi:10.11731/j.issn.1673-193x.2024.10.006]
[9]解恒星,张雄,董锦洋,等.基于CNN_BiLSTM的矿井瓦斯涌出量预测模型*[J].中国安全生产科学技术,2024,20(11):53.[doi:10.11731/j.issn.1673-193x.2024.11.007]
XIE Hengxing,ZHANG Xiong,DONG Jinyang,et al.Prediction model of mine gas emission based on CNN_BiLSTM[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2024,20(9):53.[doi:10.11731/j.issn.1673-193x.2024.11.007]
[10]程磊,张俊展,景国勋,等.基于YOLOv8的煤矿安全帽和安全背心检测算法*[J].中国安全生产科学技术,2025,21(2):115.[doi:10.11731/j.issn.1673-193x.2025.02.015]
CHENG Lei,ZHANG Junzhan,JING Guoxun,et al.Detection algorithm of safety hat and safety vest in coal mine based on YOLOv8[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2025,21(9):115.[doi:10.11731/j.issn.1673-193x.2025.02.015]