|本期目录/Table of Contents|

[1]邵良杉,高英超.基于MCMC填补的SSA-SVM煤与瓦斯突出预测模型*[J].中国安全生产科学技术,2023,19(8):94-99.[doi:10.11731/j.issn.1673-193x.2023.08.014]
 SHAO Liangshan,GAO Yingchao.SSA-SVM prediction model of coal and gas outburst based on MCMC filling[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2023,19(8):94-99.[doi:10.11731/j.issn.1673-193x.2023.08.014]
点击复制

基于MCMC填补的SSA-SVM煤与瓦斯突出预测模型*
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
19
期数:
2023年8期
页码:
94-99
栏目:
职业安全卫生管理与技术
出版日期:
2023-08-31

文章信息/Info

Title:
SSA-SVM prediction model of coal and gas outburst based on MCMC filling
文章编号:
1673-193X(2023)-08-0094-06
作者:
邵良杉12高英超1
(1.辽宁工程技术大学 系统工程研究所,辽宁 葫芦岛 125105;
2.辽宁理工学院,辽宁 锦州 121000)
Author(s):
SHAO Liangshan12 GAO Yingchao1
(1.Institute of Systems Engineering,Liaoning Technical University,Huludao Liaoning 125105,China;
2.Liaoning Institute of Science and Engineering,Jinzhou Liaoning 121000,China)
关键词:
煤与瓦斯突出预测马尔科夫链蒙特卡罗(MCMC)麻雀搜索算法(SSA)数据填补支持向量机(SVM)
Keywords:
coal and gas outburst prediction Markov chain Monte Carlo (MCMC) sparrow search algorithm (SSA) data filling support vector machines (SVM)
分类号:
TD713;X936
DOI:
10.11731/j.issn.1673-193x.2023.08.014
文献标志码:
A
摘要:
为提升煤与瓦斯突出预测准确度,减小数据缺失对煤与瓦斯突出预测的不利影响,提出1种基于链式多重填补马尔科夫链蒙特卡罗(MCMC)的麻雀搜索算法(SSA)优化支持向量机(SVM)预测模型。根据突出影响因素选取模型参数,运用MCMC对突出事故缺失值进行数据填补,采用SSA优化SVM,建立MCMC-SSA-SVM模型对填补后数据集进行预测,验证MCMC填补有效性和SSA优化性能;分别构建SVM、SSA-SVM、PSO-SVM、GAM-SVM、CMC-SVM、MCMC-PSO-SVM和MCMC-GA-SVM这7种模型进行突出预测,对比预测准确度,分析MCMC-SSA-SVM、MCMC-PSO-SVM和MCMC-GA-SVM的适应度。研究结果表明:MCMC填补后准确度均提升7.89个百分点以上,SSA的优化性能强于PSO和GA,MCMC-SSA-SVM预测准确度最高,为97.37%,泛化能力优于对比模型。研究结果可为煤与瓦斯突出预测研究提供借鉴和参考。
Abstract:
To improve the accuracy of coal and gas outburst prediction and reduce the adverse effect of missing data on coal and gas outburst prediction,a sparrow search algorithm (SSA) optimized support vector machine (SVM) prediction model based on chain multiple filling Markov chain Monte Carlo (MCMC) was proposed.The model parameters were selected according to the influencing factors of outburst,and the MCMC algorithm was applied to fill in the missing values of outburst accidents,then SSA was used to optimize SVM.A MCMC-SSA-SVM model was established to predict the filled data set,and the effectiveness of MCMC filling and the optimization performance of SSA were verified.Seven models,namely SVM,SSA-SVM,PSO-SVM,GA-SVM,MCMC-SVM,MCMC-PSO-SVM and MCMC-GA-SVM,were constructed respectively for outburst prediction to compare the accuracy,and the adaptability of MCMC-SSA-SVM,MCMC-PSO-SVM and MCMC-GA-SVM were analyzed.The results show that all the accuracies of MCMC after filling increase by more than 7.89 percentage points,the optimization performance of SSA is stronger than those of PSO and GA,MCMC-SSA-SVM has the highest prediction accuracy of 97.37%,and the generalization ability is better than the comparison models.The results can provide reference for the research on coal and gas outburst prediction.

参考文献/References:

[1]卢新明,阚淑婷.煤矿动力灾害本源预警方法关键技术与展望[J].煤炭学报,2020,45(增刊1):128-139.LU Xinming,KAN Shuting.Key technology and prospect of the original source early warning method for coal mine dynamic disaster[J].Journal of China Coal Society,2020,45(Supplement 1):128-139.
[2]邵良杉,王振,李昌明.基于模拟退火与改进粒子群的矿井通风优化算法[J].系统仿真学报,2021,33(9):2085-2094.SHAO Liangshan,WANG Zhen,LI Changming.Optimization algorithm of mine ventilation based on SA-IPSO[J].Journal of Systems Simulation,2021,33(9):2085-2094.
[3]袁亮,王伟,王汉鹏,等.巷道掘进揭煤诱导煤与瓦斯突出模拟试验系统[J].中国矿业大学学报,2020,49(2):205-214.YUAN Liang,WANG Wei,WANG Hanpeng,et al.A simulation system for coal and gas outburst induced by coal uncovering in roadway excavation[J].Journal of China University of Mining & Technology,2020,49(2):205-214.
[4]卢义玉,彭子烨,夏彬伟,等.深部煤岩工程多功能物理模拟实验系统——煤与瓦斯突出模拟实验[J].煤炭学报,2020,45(增刊1):272-283.LU Yiyu,PENG Ziye,XIA Binwei,et al.Coal and gas outburst multi-functional physical model testing system of deep coal petrography engineering[J].Journal of China Coal Society,2020,45(Supplement 1):272-283.
[5]ZHAO X S,SUN H T,CAO J,et.al.Applications of online integrated system for coal and gas outburst prediction:a case study of Xinjing Mine in Shanxi,China[J].Energy Science & Engineering,2020,8(6):1980-1996.
[6]唐巨鹏,郝娜,潘一山,等.基于声发射能量分析的煤与瓦斯突出前兆特征试验研究[J].岩石力学与工程学报,2021,40(1):31-42.TANG Jupeng,HAO Na,PAN Yishan,et al.Experimental study on precursor characteristics of coal and gas outbursts based on acoustic emission energy analysis[J].Chinese Journal of Rock Mechanics and Engineering,2021,40(1):31-42.
[7]韩永亮,李胜,胡海永,等.基于改进的GA-ELM煤与瓦斯突出预测模型[J].地下空间与工程学报,2019,15(6):1895-1902.HAN Yongliang,LI Sheng,HU Haiyong,et al.Prediction model of coal and gas outburst based on optimized GA-ELM[J].Chinese Journal of Underground Space and Engineering,2019,15(6):1895-1902.
[8]朱宝合,郑邦友,戴亦军,等.基于非线性支持向量机的隧道煤与瓦斯突出危险性预测[J].现代隧道技术,2020,57(2):20-25.ZHU Baohe,ZHENG Bangyou,DAI Yijun,et al.Prediction of tunnel coal and gas burst hazard based on nonlinear support vector machine[J].Modern Tunnelling Technology,2020,57(2):20-25.
[9]王雨虹,孙福成,付华,等.基于优化的量子门节点神经网络的煤与瓦斯突出预测[J].信息与控制,2020,49(2):249-256.WANG Yuhong,SUN Fucheng,FU Hua,et al.Prediction of coal and gas outburst based on optimized quantum gated neural networks [J].Information and Control,2020,49(2):249-256.
[10]RUBIN D B.Multiple imputation after 18+ years[J].Journal of the American Statistical Association,1996,91:473-489.
[11]杨新辉.随机抽样的方差缩减以及MCMC收敛诊断[D].北京:北京交通大学,2018.
[12]XUE J,SHEN B.A novel swarm intelligence optimization approach:sparrow search algorithm[J].Systems Science & Control Engineering,2020,8(1):22-34.
[13]陈炫儒,吴立飞,杨晓忠.基于改进麻雀搜索算法的分数阶PID参数整定[J].控制与决策,2023,24(2):1-7.CHEN Xuanru,WU Lifei,YANG Xiaozhong.Fractional-order PID parameter tuning based on improved sparrow search algorithm [J].Control and Decision,2023,24(2):1-7.
[14]郑晓亮.基于瓦斯含量法的煤与瓦斯突出预测关键技术研究[D].淮南:安徽理工大学,2018.
[15]邵良杉,詹小凡.煤与瓦斯突出missForest-EGWO-SVM预测模型[J].辽宁工程技术大学学报(自然科学版),2020,39(3):214-218.SHAO Liangshan,ZHAN Xiaofan.MissForest-EGWO-SVM prediction model for coal and gas protrusion [J].Journal of Liaoning Technology University (Natural Science),2020,39(3):214-218.
[16]花琳琳.不同缺失值处理技术的模拟比较[D].郑州:郑州大学,2012.

相似文献/References:

[1]念其锋,施式亮,李润求.基于网络分析和联系熵的煤与瓦斯突出预测研究[J].中国安全生产科学技术,2014,10(2):22.[doi:10.11731/j.issn.1673-193x.2014.02.004]
 NIAN Qi feng,SHI Shi liang,LI Run qiu.Study on coal and gas outburst prediction based on analytic network process and connection entropy[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(8):22.[doi:10.11731/j.issn.1673-193x.2014.02.004]
[2]温廷新,苏焕博.基于链式多重插补的WOA-ELM煤与瓦斯突出预测模型*[J].中国安全生产科学技术,2022,18(7):68.[doi:10.11731/j.issn.1673-193x.2022.07.010]
 WEN Tingxin,SU Huanbo.WOA-ELM prediction model of coal and gas outburst based on multiple imputation by chained equations[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(8):68.[doi:10.11731/j.issn.1673-193x.2022.07.010]
[3]温廷新,高倩.基于AE-CLSSA-ELM的煤与瓦斯突出危险性预测模型*[J].中国安全生产科学技术,2023,19(5):73.[doi:10.11731/j.issn.1673-193x.2023.05.010]
 WEN Tingxin,GAO Qian.Prediction model of coal and gas outburst risk based on AE-CLSSA-ELM[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2023,19(8):73.[doi:10.11731/j.issn.1673-193x.2023.05.010]
[4]邵良杉,毕圣昊,王彦彬,等.基于ISSA-ELM的煤与瓦斯突出危险等级预测*[J].中国安全生产科学技术,2023,19(9):76.[doi:10.11731/j.issn.1673-193x.2023.09.011]
 SHAO Liangshan,BI Shenghao,WANG Yanbin,et al.Prediction of coal and gas outburst risk level based on ISSA-ELM[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2023,19(8):76.[doi:10.11731/j.issn.1673-193x.2023.09.011]

备注/Memo

备注/Memo:
收稿日期: 2023-03-06
* 基金项目: 国家自然科学基金项目(71771111)
作者简介: 邵良杉,博士,教授,主要研究方向为矿业系统工程等。
通信作者: 高英超,硕士研究生,主要研究方向为矿业系统工程。
更新日期/Last Update: 2023-09-07