|本期目录/Table of Contents|

[1]李俊,张訢炜,高照,等.基于EMD-HHT可定位长输天然气管道第三方破坏事件监测技术*[J].中国安全生产科学技术,2023,19(3):121-129.[doi:10.11731/j.issn.1673-193x.2023.03.018]
 LI Jun,ZHANG Xinwei,GAO Zhao,et al.Monitoring technology of third-party damage events in long-distance natural gas pipeline located by EMD-HHT[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2023,19(3):121-129.[doi:10.11731/j.issn.1673-193x.2023.03.018]
点击复制

基于EMD-HHT可定位长输天然气管道第三方破坏事件监测技术*
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
19
期数:
2023年3期
页码:
121-129
栏目:
职业安全卫生管理与技术
出版日期:
2023-03-31

文章信息/Info

Title:
Monitoring technology of third-party damage events in long-distance natural gas pipeline located by EMD-HHT
文章编号:
1673-193X(2023)-03-0121-09
作者:
李俊张訢炜高照姚瑞煦张家瑞张鼎博范斌斌马天 翟小伟
(1.西安科技大学 安全科学与工程学院,陕西 西安 710054;
2.西安科技大学 陕西省煤火灾害防治重点实验室,陕西 西安 710054)
Author(s):
LI Jun ZHANG Xinwei GAO Zhao YAO Ruixu ZHANG Jiarui ZHANG Dingbo FAN Binbin MA TianZHAI Xiaowei
(1.School of Safety Science and Engineering,Xi’an University of Science and Technology,Xi’an Shaanxi 710054,China;
2.Shaanxi Provincial Key Laboratory of Coal Fire Disaster Prevention and Control,Xi’an University of Science and Technology,Xi’an Shaanxi 710054,China)
关键词:
管道运输光纤传感特征向量实时监测
Keywords:
pipeline transportation optical fiber sensing feature vector real-time monitoring
分类号:
TE88;X937
DOI:
10.11731/j.issn.1673-193x.2023.03.018
文献标志码:
A
摘要:
为适应目前管道安全监测需要,满足对扰动信号分类监测的实际需求,提出1种基于希尔伯变换和经验模态分解(EMD-HHT)的信号特征提取技术,利用基于φ-OTDR分布式光纤传感系统采集振动信号,通过EMD+HHT区分算法对管道沿线振动事件进行分解并提取6个典型特征向量,各特征事件数据经过EMD后选取IMF3为最终提取特征向量的原始数据,BP神经元网络可有效识别机械破坏、敲击破坏、车辆经过、人工挖掘、动力干扰5种事件。研究结果表明:在长输管道信号识别中,BP神经网络对5类事件平均识别率高达98.6%,该技术分类识别5类事件扰动信号,能够达到较高准确性,并且误报率平均在1.3%,能较好满足现场安全实时监测需求。研究结果对长输油气管道附近第三方破坏扰动信号分类监测具有一定参考意义。
Abstract:
In order to meet the current needs of pipeline safety monitoring,and solve the actual needs of classification monitoring on disturbance signals,a signal feature extraction technique based on Hilberg transform and empirical mode decomposition (EMD-HHT) was proposed,and the vibration signals were collected by a distributed optical fiber sensing system based on φ-OTDR.The vibration events along the pipeline were decomposed by EMD+HHT distinguishing algorithm,and six typical feature vectors were extracted.After EMD,IMF3 is selected as the original data of feature vector extraction.The BP neural network could effectively identify five kinds of interference events,such as mechanical damage,knock damage,vehicle passing,artificial excavation and dynamic interference.The results showed that in the recognition of long-distance pipeline signals,the average recognition rate of BP neural network for 5 types of events was as high as 98.6%.The classification and recognition of 5 types of event disturbance signals could achieve high accuracy,and the average probability of false report was 1.3%,which could better meet the needs of field safety real-time monitoring.The research results have reference significance for the classification monitoring of disturbance signals.

参考文献/References:

[1]张丽燕.基于阴极保护技术的长输管道安全监测技术的研究[D].北京:北京化工大学,2008.
[2]徐晓刚,柳蜀湘.油气管道安全监测技术的发展趋势[J].兰州石化职业技术学院学报,2015,15(3):9-12. XU Xiaogang,LIU Shuxiang.Development trend of oil and gas pipeline safety early warning technology [J].Journal of Lanzhou Petrochemical Vocational and Technical College,2015,15(3):9-12.
[3]孙巍.油气管道光纤安全监测技术应用研究[D].兰州:兰州大学,2012.
[4]罗志会,华鹏,徐冰,等.基于超弱光纤光栅阵列的地表位移监测方法[J].中国安全生产科学技术,2022,18(S1):18-24. LUO Zhihui,HUA Peng,XU Bing,et al.Surface displacement monitoring method based on ultra-weak fiber Bragg grating array [J].Journal of Safety Science and Technology,2022,18(S1):18-24.
[5]江梦梦,姚斌.分布式光纤火灾探测系统敷设间距研究[J].中国安全生产科学技术,2015,11(7):43-48. JIANG Mengmeng,YAO Bin.Research on laying spacing of distributed optical fiber fire detection system [J].Journal of Safety Science and Technology,2015,11(7):43-48.
[6]SUN Q,FENG H,YAN X,et al.Recognition of a phase-sensitivity OTDR sensing system based on morphologic feature extraction[J].Sensors,2015,15(7):15179-15197.
[7]WU H,QIAN Y,ZHANG W,et al.Feature extraction and identification in distributed optical-fiber vibration sensing system for oil pipeline safety monitoring[J].Photonic Sensors,2017,7(4):305-310.
[8]贾洪志.基于Φ-OTDR的分布式光纤传感系统扰动识别研究[D].北京:北京交通大学,2020.
[9]WEN H,PENG Z,JIAN J,et al.Artificial intelligent pattern recognition for optical fiber distributed acoustic sensing systems based on phase-OTDR[C]//2018 Asia Communications and Photonics Conference (ACP),IEEE,2018:1-4.
[10]FOUDA B M,HAN D,AN B,et al.Events detection and recognition by the fiber vibration system based on power spectrum estimation[J].Advances in Mechanical Engineering,2018,10(11):1-9.
[11]WANG J,HU Y,SHAO Y.The digging signal identification by the random forest algorithm in the phase-OTDR technology[C]//IOP Conference Series:Materials Science and Engineering,IOP Publishing,2018,394(3):032005.
[12]WANG Y,WANG P,DING K,et al.Pattern recognition using relevant vector machine in optical fiber vibration sensing system[J].IEEE Access,2019(7):5886-5895.
[13]SUN Q,FENG H,YAN X,et al.Recognition of a phase-sensitivity OTDR sensing system based on morphologic feature extraction[J].Sensors,2015,15(7):15179-15197.
[14]张鼎博,李俊,张维,等.光纤光栅传感技术在异形结构健康监测中的应用[J].激光与光电子学进展,2022,59(5):85-97. ZHANG Dingbo,LI Jun,ZHANG Wei,et al.Application of fiber bragg grating sensing technology in health monitoring of profiled structures [J].Laser & Optoelectronics Progress,2022,59(5):85-97.
[15]邹瑛珂,贾云飞,刘素芸.一种基于改进EMD分解人车地震动信号识别算法[J].中国测试,2022,48(4):85-94. ZOU Yingke,JIA Yunfei,LIU Suyun.An algorithm of ground motion mecognition based on improved EMD decomposition [J].China Test and Measurement,2022,48(4):85-94.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期: 2022-07-20 * 基金项目: 国家自然科学基金项目(51904231);国家重点研发计划项目(2021YFE0105000)
作者简介: 李俊,博士,副教授,主要研究方向为微纳光纤悬臂梁传感及微弱信号探测研究、新型分布式光纤多参量监测技术、开放式气体激光雷达信号识别监测技术等。
通信作者: 张訢炜,硕士研究生,主要研究方向为安全监测。
更新日期/Last Update: 2023-04-12