[1]夏光辉.基于词典与机器学习的基因命名实体识别机制研究[D].北京:北京协和医学院,2013.
[2]王世民.基于深度学习的中文电子病历命名实体识别研究[D].武汉:华中科技大学,2020.
[3]翟菊叶,陈春燕,张钰,等.基于CRF与规则相结合的中文电子病历命名实体识别研究[J].包头医学院学报,2017,33(11):124-125,130.
ZHAI Juye,CHENG Chunyan,ZHANG Yu,et al.A study on the recognition of named entities in Chinese electronic medical records based on a combination of CRF and rules[J].Joural of Baotou Medical College,2017,33(11):124-125,130.
[4]张鹏翔.多维字符特征表示的铁路设备事故信息抽取方法[J].中国安全科学学报,2022,32(6):109-114.
ZHANG Pengxiang.Multi-dimensional character feature representation of railway equipment accident information extraction method[J].China Safety Science Journal,2022,32(6):109-114.
[5]王红,祝寒,林海舟.航空安全事故因果关系抽取方法的研究[J].计算机工程与应用,2020,56(11):265-270.
WANG Hong,ZHU Han,LIN Haizhou.A study of causality extraction methods for aviation safety incidents[J].Computer Engineering and Applications,2020,56(11):265-270.
[6]牛毅,樊运晓,高远.基于数据挖掘的化工生产事故致因主题抽取[J].中国安全生产科学技术,2019,15(10):165-170.
NIU Yi,FAN Yunxiao,GAO Yuan.Data mining-based extraction of causal themes for chemical production accidents[J].Journal of Safety Science and Technology,2019,15(10):165-170.
[7]QIN Y,ZENG Y.Research of clinical named entity recognition based on Bi-LSTM-CRF[J].Journal of Shanghai Jiao Tong University(Science),2018,23(3):392-397.
[8]LI X,SHI T,LI P,et al.BiLSTM-CRF model for named entity recognition in railway accident and fault analysis report[C]//The Asia-Pacific Conference on Intelligent Medical 2018 & International Conference on Transportation and Traffic Engineering 2018,Beijing,2018.
[9]杨连报.铁路事故故障文本大数据分析关键技术研究及应用[D].北京:中国铁道科学研究院,2018.
[10]LEI T,BARZILAY R,JAAKKOLA T.Molding CNNs for text:non-linear,non-consecutive convolutions[J].Indiana University Mathematics Journal,2015,58(3):1151-1186.
[11]WANG C,JIANG F,YANG H.A hybrid framework for text modeling with convolutional RNN[C]//The 23rd ACM SIGKDD International Conference,Hangzhou,2017.
[12]QIN Y,SHEN G W,ZHAO W B,et al.A network security entity recognition method based on feature template and CNN-BiLSTM-CRF[J].Frontiers of Information Technology and Electronic Engineering,2019,20(6):13-19.
[13]胡吉明,钱玮,文鹏,等.基于结构功能和实体识别的文本语义表示—以病历领域为例[J].数据分析与知识发现,2022,8(6):1-15.
HU Jiming,QIAN Wei,WEN Peng,et al.Text semantic representation based on structure-function and entity recognition:case study on medical records[J].Data Analysis and Knowledge Discovery,2022,8(6):1-15.
[14]SALAKHUTDINOV R,HINTON G E.Replicated softmax:an undirected topic model[C]//International Conference on Neural Information Processing Systems,Vancouver:2009.
[15]曾佐祺,李赞.基于Viterbi算法的GMSK信号解调性能分析与仿真[J].重庆邮电大学学报,2008,20(2):7-11
ZENG Zuoqi,LI Zan.Analysis and simulation of demodulation performance of GMSK signals based on Viterbi algorithm[J].Journal of Chongqing University of Posts and Telecommunications,2008,20(2):7-11.
[16]VOLODYMYR M,KORAY K,DAVID S,et al.Human-level control through deep reinforcement learning[J].Nature,2015,518(7540):529-533.
[17]王悦.基于强化学习的生物医学实体识别研究与应用[D].大连:大连理工大学,2020.
[1]牛飞,钟少波,刘楠,等.一种改进的灾害新闻3要素提取方法研究*[J].中国安全生产科学技术,2023,19(2):13.[doi:10.11731/j.issn.1673-193x.2023.02.002]
NIU Fei,ZHONG Shaobo,LIU Nan,et al.Research on an improved extraction method for three elements of disaster news[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2023,19(3):13.[doi:10.11731/j.issn.1673-193x.2023.02.002]
[2]成全,张双宝.基于深度学习的特征增强式安全事故文本实体识别模型研究*[J].中国安全生产科学技术,2024,20(6):58.[doi:10.11731/j.issn.1673-193x.2024.06.008]
CHENG Quan,ZHANG Shuangbao.Research on feature-enhanced model for entity recognition of safety accident text based on deep learning[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2024,20(3):58.[doi:10.11731/j.issn.1673-193x.2024.06.008]
[3]王明达,赵宝熙,吴志生,等.基于大语言模型的燃气事故调查报告实体识别*[J].中国安全生产科学技术,2025,21(2):139.[doi:10.11731/j.issn.1673-193x.2025.02.018]
WANG Mingda,ZHAO Baoxi,WU Zhisheng,et al.Entity recognition of gas accident investigation reports based on large language model[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2025,21(3):139.[doi:10.11731/j.issn.1673-193x.2025.02.018]