|本期目录/Table of Contents|

[1]史君林,练章华,丁亮亮,等.高压、超高压油气井装备抗内压强度设计计算分析*[J].中国安全生产科学技术,2023,19(2):143-151.[doi:10.11731/j.issn.1673-193x.2023.02.020]
 SHI Junlin,LIAN Zhanghua,DING Liangliang,et al.Calculation and analysis on internal pressure strength design forequipment of high pressure and ultra-high pressure oil and gas wells[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2023,19(2):143-151.[doi:10.11731/j.issn.1673-193x.2023.02.020]
点击复制

高压、超高压油气井装备抗内压强度设计计算分析*
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
19
期数:
2023年2期
页码:
143-151
栏目:
职业安全卫生管理与技术
出版日期:
2023-02-28

文章信息/Info

Title:
Calculation and analysis on internal pressure strength design forequipment of high pressure and ultra-high pressure oil and gas wells
文章编号:
1673-193X(2023)-02-0143-09
作者:
史君林练章华丁亮亮施太和谷天平
(1.四川轻化工大学 机械工程学院,四川 宜宾 644000;
2.西南石油大学 油气藏地质及开发工程国家重点实验室,四川 成都 610500)
Author(s):
SHI Junlin LIAN Zhanghua DING Liangliang SHI Taihe GU Tianping
(1.School of Mechanical Engineering,Sichuan University of Science & Engineering,Yibin Sichuan 644000,China;
2.State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation,Southwest Petroleum University,Chengdu Sichuan 610500,China)
关键词:
高压超高压井抗内压强度弹塑性强度计算韧性
Keywords:
highpressure and ultra-highpressure wells internal pressure strength elasto-plasticity strength calculation toughness
分类号:
TE931
DOI:
10.11731/j.issn.1673-193x.2023.02.020
文献标志码:
A
摘要:
为解决传统计算公式与方法已几乎无法满足目前对高压、超高压油气井装备强度设计的需求,利用理论分析方法,对不同抗内压强度计算公式进行详细分析,引入压力容器行业高压、超高压的计算公式与方法,并对某高温高压井抗内压强度进行分析,提出适用于超高压油气井的油套管抗内压强度计算公式。研究结果表明:不同抗内压强度公式的基本思想与设计准则不同,在使用时应注意限制条件,现有的抗内压强度计算公式不适用于高压、超高压油气井,材料性能不能充分利用且存在一定安全隐患;对超过100 MPa的油气井,可以采用弹塑性理念计算抗内压强度,对于油套管可以减小强度等级同时增加壁厚来满足抗内压强度要求。研究结果对高压、超高压油气井装备抗内压强度设计具有一定参考价值。
Abstract:
To address the need for strength design for high pressure and ultra-high pressure oil and gas wells that traditional calculation formulas and methods can no longer meet.Different formulas for calculating the internal pressure strength were analyzed in detail by theoretical analysis.The calculation formulas and methods of high pressure and ultra-high pressure in the pressure vessel industry were introduced,and the internal pressure strength of a hightemperature and highpressure well was analyzed.A formula for calculating the internal pressure strength of oil casing in the ultra-high pressure oil and gas wells was proposed.The results showed that the basic idea and design criteria of different internal pressure strength formulas were different,and the conditions should be paid attention to when using them.The existing internal pressure strength calculation formulas were not applicable to the highpressure and ultra-high pressure oil and gas wells,and the material properties could not be fully utilized and there were certain potential safety hazards.For the oil and gas wells over 100 MPa,the elastic-plastic concept was used to calculate the internal pressure strength.For the oil casing,therequirements of internal pressure strength could be met by reducing the strength grade and increasing the wall thickness.The research has certain reference value for the design of internal pressure strength of equipmentin the high pressure and ultra-high pressure oil and gas wells.

参考文献/References:

[1]汪海阁,黄洪春,毕文欣,等.深井超深井油气钻井技术进展与展望[J].天然气工业,2021,41(8):163-177. WANG Haige,HUANG Hongchun,BI Wenxin,et al.Deep and ultra-deep oil/gas well drilling technologies:progress and prospect[J].Natural Gas Industry,2021,41(8):163-177.
[2]冯耀荣,付安庆,王建东,等.复杂工况油套管柱失效控制与完整性技术研究进展及展望[J].天然气工业,2020,40(2):106-114. FENG Yaorong,FU Anqing,WANG Jiandong,et al.Failure control and integrity technologies of tubing/casing string under complicated working conditions:research progress and prospect [J].Natural Gas Industry,2020,40(2):106-114.
[3]ARASH S,MAHMOOD A.HPHT 101-what every engineer or geoscientist should know about high pressure high temperature wells[C]//SPE Kuwait International Petroleum Conference and Exhibition,Kuwait City:Kuwait,2012:SPE-163376-MS.
[4]李中全,吕拴录,杨成新,等.高强度套管断裂失效预防及标准化[J].理化检验(物理分册),2014,50(12):903-906. LI Zhongquan,LYU Shuanlu,YANG Chengxin,et al.Preventing high strength casing from fracture and standardization[J].Physical Testing and Chemical Analysis (Physical Testing),2014,50(12):903-906.
[5]郝俊芳,龚伟安.套管强度计算与设计[M].北京:石油工业出版社,1987.
[6]林元华,孙永兴,曾德智,等.套管工作力学[M].北京:石油工业出版社,2016.
[7]孙永兴,林元华,舒玉春,等.ISO10400油套管强度新模型[J].石油钻探技术,2008(1):42-44. SUN Yongxing,LIN Yuanhua,SHU Yuchun,et al.Newmodel for tubing and casing strength:ISO 10400[J].Petroleum Drilling Techniques,2008(1):42-44.
[8]孙永兴,林元华,廖平,等.ISO10400油管套管抗内压爆裂设计[J].石油钻探技术,2010,38(3):67-69. SUN Yongxing,LIN Yuanhua,LIAO Ping,et al.Burstdesign of casing and tubing string using ISO10400[J].Petroleum Drilling Techniques,2010,38(3):67-69.
[9]张强,练章华,林铁军,等.气体钻与泥浆钻全井段套管磨损对比研究[J].中国安全生产科学技术,2018,14(6):121-127. ZHANG Qiang,LIAN Zhanghua,LIN Tiejun,et al.Comparative study on casing wear of whole well section by gas drilling and mud drilling[J].Journal of Safety Science and Technology,2018,14(6):121-127.
[10]YU H,TALEGHANI A D,LIAN Z H.Modelling casing wear at doglegs by incorporating alternate accumulative wear[J].Journal of Petroleum Science and Engineering,2018,168:273-282.
[11]孙永兴,施太和,林元华,等.含微裂纹油井套管的抗内压断裂强度预测[J].石油钻探技术,2009,37(6):35-38. SUN Yongxing,SHI Taihe,LIN Yuanhua,et al.Prediction ofburst strength of oil well casing strings with micro-cracks[J].Petroleum Drilling Technology,2009,37(6):35-38.
[12]周科,钟守明,孙晓瑞.压裂油管抗内压强度校核方法[J].石油矿场机械,2016,45(3):21-25. ZHOU Ke,ZHONG Shouming,SUN Xiaorui.Internalpressure strength checking method analysis of fracturing tubing[J].Oil Field Equipment,2016,45(3):21-25.
[13]于浩,练章华,林铁军,等.页岩气体积压裂过程中套管失效机理研究[J].中国安全生产科学技术,2016,12(10):37-43. YU Hao,LIAN Zhanghua,LIN Tiejun,et al.Study on failure mechanism of casing in stimulated reservoir volume fracturing of shale gas[J].Journal of Safety Science and Technology,2016,12(10):37-43.
[14]PASLAY P R,CORP T,CEMOCKY E P,et al.Burst pressure prediction of thin-walled,ductile tubulars subjected to axial load[C]//The Woodlands,Texas:Society of Petoleum Enginess,1998:SPE 48327.
[15]吕拴录,宋治,韩勇,等.套管抗内压强度试验研究[J].石油矿场机械,2001(S1):51-55. LYU Shuanlu,SONG Zhi,HAN Yong,et al.Test and study on internal pressure strength of the casing[J].Oil Field Equipment,2001(S1):51-55.
[16]梁瑞,李乐.油管与套管抗内压强度研究[J].断块油气田,2012,19(3):378-381. LIANG Rui,LI Le.Research on internal pressure strength of tubing and casing[J].Fault-Block Oil & Gas Field,2012,19(3):378-381.
[17]全国锅炉压力容器标准化技术委员会.压力容器第3部分:设计:GB/T 150.3—2011[S].北京:中国标准出版社,2012.
[18]ASME Boiler and Pressure Vessel Committee on Pressure Vessels.Rules for construction of pressure vessels division 1:ASME BPVC Ⅷ-1-2021 [S].NewYork:ASME,2021.
[19]石油工业标委会石油钻井工程专标委.套管柱结构与强度设计:SY/T 5724—2008 [S].北京:石油工业出版社,2009.
[20]全国石油天然气标准化技术委员会.石油天然气工业套管、油管、钻杆和用作套管或油管的管线管性能公式及计算:GB/T 20657—2011[S].北京:中国标准出版社,2012.
[21]史君林,练章华,谷天平,等.双金属复合管液压成形力学模型与数值模拟研究[J].塑性工程学报,2022,29(5):161-169. SHI Junlin,LIAN Zhanghua,GU Tianping,et al.Mechanical model and numerical simulation study on hydroforming of bimetal composite pipe[J].Journal of Plasticity Engineering,2022,29(5):161-169.
[22]American Petroleum Institute.High-pressurehigh-temperature (HPHT) flange design methodology:API TR 6AF3—2020 [S].Washington:API,2020.
[23]陈志伟,李涛,杨国义,等.GB/T 34019—2017《超高压容器》标准分析[J].压力容器,2019,36(4):46-51. CHEN Zhiwei,LI Tao,YANG Guoyi,et al.Technical progress in GB/T 34019—2017 standard ultrahigh pressure vessel[J].Pressure Vessel Technology,2019,36(4):46-51.
[24]ASME Boiler and Pressure Vessel Committee on Pressure Vessels.Rules forconstruction of pressure vessels division 3 alternative rules for construction of high pressure vessels:ASME BPVC Ⅷ-3-2021[S].New York:ASME,2021.
[25]ASME Boiler and Pressure Vessel Committee on Pressure Vessels.Rules forconstruction of pressure vessels division 3 alternative rules for construction of high pressure vessels:ASME BPVC Ⅷ-3-2010 [S].New York:ASME,2010.
[26]ASME Boiler and Pressure Vessel Committee on Pressure Vessels.Rules forconstruction of pressure vessels division 3 alternative rules for construction of high pressure Vessels:ASME BPVC Ⅷ-3-2007 [S].New York:ASME,2007.
[27]ASME Boiler and Pressure Vessel Committee on Pressure Vessels.Rules forconstruction of pressure vessels division 2 alternative rules construction of high pressure Vessels:ASME BPVC Ⅷ-2-2007 [S].NewYork:ASME,2007.
[28]全国锅炉压力容器标准化技术委员会.钢制压力容器分析设计标准(2005年确认):JB 4732—1995 [S].北京:新华出版社出版,2007.
[29]全国钢标准化技术委员会.金属材料拉伸试验 第1部分:室温试验方法:GB/T 228.1—2021 [S].北京:中国标准出版社,2021.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期: 2022-08-10
* 基金项目: 国家自然科学基金项目 (51974271)
作者简介: 史君林,博士研究生,讲师,主要研究方向为油气井工程力学。
通信作者: 练章华,博士,教授,主要研究方向为CAD/CAE/CFD、套管损坏机理及管柱力学等。
更新日期/Last Update: 2023-03-07