[1]张足斌,张淑丽,潘俐敏,等.腐蚀缺陷管道剩余强度评价方法选择及应用[J].油气储运,2020,39(4):400-406.
ZHANG Zubin,ZHANG Shuli,PAN Limin,et al.Selection and application of assessment methods for residual strength of corroded pipelines[J] Oil & Gas Storage and Transportation,2020,39(4):400-406.
[2]崔凯燕,闫茂成,王晓霖,等.某输气管道的腐蚀缺陷评价与维修决策[J].腐蚀与防护,2019,40(9):682-686.
CUI Kaiyan,YAN Maocheng,WANG Xiaolin,et al.Corrosiondefect assessment and maintenance decision making of a gas transmission pipeline[J].Corrosion & Protection,2019,40(9):682-686.
[3]马斌,帅健,李晓魁,等.新版ASME B31G-2009管道剩余强度评价标准先进性分析[J].天然气工业,2011,31(8):112-115.
MA Bin,SHUAI Jian,LI Xiaokui,et al.Advances in the newest version of ASME B31G-2009[J].Natural Gas Industry,2011,31(8):112-115.
[4]QING S T,FAN X X,YANG Z J,et al.Application of ASME B31G-2012 to the residual strength evaluation of pipelines with volumetric defects[J].Natural Gas Industry,2016,36(5):115-121.
[5]LAW M,KIRSTEIN O,LUZIN V.Effect of residual stress on the integrity of a branch connection[J].International Journal of Pressure Vessels and Piping,2012(5),96-97.
[6]郑恒伟,杨国欣,王东哲.腐蚀管道剩余强度数值分析及ANSYS二次开发[J].功能材料,2018,49(11):11075-11079.
ZHENG Hengwei,YANG Guoxin,WANG Dongzhe.Analysis of residual for corroded pipeline and customized secondary development of ANSYS software[J].Journal of Functional Materials,2018,49(11):11075-11079.
[7]杨燕华,顾晓婷,张旭,等.高级X100输气管道含双点腐蚀缺陷的剩余强度研究[J].腐蚀与防护,2021,42(4):48-53.
YANG Yanhua,GU Xiaoting,ZHANG Xu,et al.Study on residual strength of hight-grade X100 Gas pipeline with double point corrosion defects[J].Corrosion & Protection,2021,42(4):48-53.
[8]马廷霞,潘玉林,黄文,等.含等壁厚体积型缺陷油气管道的剩余强度评价[J].材料保护,2020,53(5):34-41.
MA Tingxia,PAN Yulin,HUANG Wen,et al.Residual strength evaluation of oil and gas pipeline with volumetric defects of the same thickness[J].Materials Protection,2020,53(5):34-41.
[9]臧雪瑞,顾晓婷,王秋妍.含腐蚀缺陷X100输气管道的剩余强度研究[J].材料保护,2019,52(9):125-131.
ZANG Xuerui,GU Xiaoting,WANG Qiuyan.Research on residual strength of X100 pipeline with corrosion defects[J].Materials Protection,2019,52(9):125-131.
[10]王艺斐,苏春,谢明江.基于二元逆高斯过程的腐蚀输油管道剩余寿命预测[J].东南大学学报(自然科学版),2020,50(6):1038-1044.
WANG Yifei,SU Chun,XIE Mingjiang.Remaining useful life prediction of corroded oil pipelines based on binary inverse Gaussian process[J].Journal of Southeast University(Natural Science Edition),2020,50(6):1038-1044.
[11]骆正山,肖雨,王小完.基于IWOA-PNN模型的管道焊缝腐蚀剩余强度预测[EB/OL].(2021-12-06)[2022-03-25].https://doi.org/10.13637/j.issn.1009-6094.2021.1785.
LUO Zhengshan,XIAO Yu,WANG Xiaowan.Prediction of remaining strength of pipeline weld corrosion based on IWOA-PNN model[EB/OL].(2021-12-06)[2022-03-25].https://doi.org/10.13637/j.issn.1009-6094.2021.1785.
[12]徐鲁帅,凌晓,马娟娟,等.基于DE-BPNN模型的含腐蚀缺陷管道失效压力预测[J].中国安全生产科学技术,2021,17(3):91-96.
XU Lushuai,LING Xiao,MA Juanjuan,et al.Prediction on failure pressure of pipeline containing corrosion defects based on DE-BPNN[J].Journal of Safety Science and Technology,2021,17(3):91-96.
[13]张新生,张玥.基于Lasso-PSO-BP神经网络的腐蚀管道失效压力的预测[J].材料保护,2020,53(4):46-52.
ZHANG Xinsheng,ZHANG Yue.Prediction of failure pressure of corroded pipeline based on Lasso-PSO-BP neural network[J].Materials Protection,2020,53(4):46-52.
[14]李琴,孙春梅,黄志强,等.兰成渝腐蚀管道失效压力的GA-BP神经网络组合预测方法[J].中国安全生产科学技术,2015,11(11):83-89.
LI Qin,SUN Chunmei,HUANG Zhiqiang,et al.Combined forecasting method of GA-BP neural network for failure pressure of Lan-Cheng-Yu corroded pipelines[J].Journal of Safety Science and Technology,2015,11(11):83-89.
[15]贾思奇,郄彦辉,李煜彤,等.基于遗传-神经网络算法的含均匀腐蚀缺陷油气管线爆破压力预测研究[J].中国安全生产科学技术,2020,16(12):105-110.
JIA Siqi,QIE Yanhui,LI Yutong,et al.Research on burst pressure prediction of oil and gas pipelines with uniform corrosion defects based on GA-BPNNs algorithm[J].Journal of Safety Science and Technology,2020,16(12):105-110.
[16]凌晓,徐鲁帅,高甲程,等.基于IFA-BPNN的长输管道外腐蚀速率预测[J].表面技术,2021,50(4):285-293.
LING Xiao,XU Lushuai,GAO Jiacheng,et al.Prediction of external corrosion rate of oil pipeline based on improved IFA-BPNN[J].Surface Technology,2021,50(4):285-293.
[17]XIE M J,LI Z S,ZHAO J L,et al.A prognostics method based on back propagation neural network for corroded pipelines[J].Micromachines,2021,12(12):1568.
[18]SURYA V,SENTHILSELVI A.Identification of oil authenticity and adulteration using deep long short term memory based neural network with seagull optimization algorithm[J].Neural Computing and Applications,2022,34:7611-7625.
[19]RAFASH A G H,SAEED E M H,TALIB A S M.Development of an enhanced scatter search algorithm using discrete chaotic Arnold’s cat map[J].Eastern-European Journal of Enterprise Technologies,2021,6(4(114)):15-20.
[20]金保明,卢光毅,王伟,等.基于弹性梯度下降算法的BP神经网络降雨径流预报模型[J].山东大学学报(工学版),2020,50(3):117-124.
JIN Baoming,LU Guangyi,WANG Wei,et al.Research on BP neural network rainfall runoff forecasting model based on elastic gradient descent algorithm[J].Journal of Shandong University(Engineering,2020,50(3):117-124.
[21]MA B,SHUAI J,LIU D X,et al.Assessment on failure pressure of high strength pipeline with corrosion defects[J].Engineering Failure Analysis,2013,32:209-219.