|本期目录/Table of Contents|

[1]骆正山,彭红发.基于ISOA-RBPNN的埋地管道剩余强度预测*[J].中国安全生产科学技术,2023,19(1):143-148.[doi:10.11731/j.issn.1673-193x.2023.01.021]
 LUO Zhengshan,PENG Hongfa.Residual strength prediction of buried pipeline based on ISOA-RBPNN[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2023,19(1):143-148.[doi:10.11731/j.issn.1673-193x.2023.01.021]
点击复制

基于ISOA-RBPNN的埋地管道剩余强度预测*
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
19
期数:
2023年1期
页码:
143-148
栏目:
职业安全卫生管理与技术
出版日期:
2023-01-31

文章信息/Info

Title:
Residual strength prediction of buried pipeline based on ISOA-RBPNN
文章编号:
1673-193X(2023)-01-0143-06
作者:
骆正山彭红发
(西安建筑科技大学 管理学院,陕西 西安 710055)
Author(s):
LUO Zhengshan PENG Hongfa
(School of Management,Xi’an University of Architecture and Technology,Xi’an Shaanxi 710055,China)
关键词:
安全工程技术科学弹性BP神经网络改进海鸥优化算法剩余强度管道腐蚀
Keywords:
safety engineering technology science resilient BP neural network improved seagull optimization algorithm residual strength pipeline corrosion
分类号:
X937
DOI:
10.11731/j.issn.1673-193x.2023.01.021
文献标志码:
A
摘要:
为提高腐蚀管道剩余强度的预测精度,提出引入弹性梯度下降法改进BP神经网络,并融合改进海鸥优化算法(ISOA),构建腐蚀管道剩余强度预测模型。关于改进BP神经网络模型的参数寻优,首先采用Cat混沌映射初始化改进海鸥优化算法(SOA)初始种群的分布,提升寻优能力,优化SOA的搜索方向和攻击形式,增强其全局搜索能力并提高收敛速度,然后用ISOA对弹性BP神经网络(RBPNN)模型中的权值和阈值进行寻优,最后构建ISOA-RBPNN预测模型。以管道爆破数据为例,利用MATLAB进行仿真模拟,并与PSO-BPNN模型和IFA-BPNN模型预测结果进行对比分析。研究结果表明:ISOA-RBPNN模型的各项评价指标均优于其他2个模型,预测结果较实际值误差更小,在预测腐蚀管道剩余强度领域具有更好的性能,可为后续研究腐蚀管道剩余寿命和制定维修策略提供参考依据。
Abstract:
In order to improve the prediction accuracy of the residual strength of corroded pipelines,the elastic gradient descent method was introduced to improve the BP neural network,and the improved seagull optimization algorithm (ISOA) was integrated to construct the residual strength prediction model of corroded pipelines.Regarding the parameter optimization of the improved BP neural network model,the Cat chaotic map was used to initialize and optimize the distribution of the initial population of the seagull optimization algorithm (SOA) for improving the optimization ability,and the search direction and attack form of SOA were optimized to enhance its global search ability and improve the convergence speed.Then ISOA was used to optimize the weights and thresholds in the resilient BP neural network (RBPNN) model,and finally the ISOA-RBPNN prediction model was established.Taking the pipeline blasting data as an example,MATLAB was used for simulation,and the prediction results of the model were compared and analyzed with those of PSO-BPNN model and IFA-BPNN model.The results showed that the evaluation indicators of the ISOA-RBPNN model were all better than the other two models,the error between the prediction results the actual value was smaller,and it had better performance in predicting the residual strength of corroded pipeline.It can provide reference for the follow-up study on the remaining life of corroded pipelines and the formulation of maintenance strategies.

参考文献/References:

[1]张足斌,张淑丽,潘俐敏,等.腐蚀缺陷管道剩余强度评价方法选择及应用[J].油气储运,2020,39(4):400-406. ZHANG Zubin,ZHANG Shuli,PAN Limin,et al.Selection and application of assessment methods for residual strength of corroded pipelines[J] Oil & Gas Storage and Transportation,2020,39(4):400-406.
[2]崔凯燕,闫茂成,王晓霖,等.某输气管道的腐蚀缺陷评价与维修决策[J].腐蚀与防护,2019,40(9):682-686. CUI Kaiyan,YAN Maocheng,WANG Xiaolin,et al.Corrosiondefect assessment and maintenance decision making of a gas transmission pipeline[J].Corrosion & Protection,2019,40(9):682-686.
[3]马斌,帅健,李晓魁,等.新版ASME B31G-2009管道剩余强度评价标准先进性分析[J].天然气工业,2011,31(8):112-115. MA Bin,SHUAI Jian,LI Xiaokui,et al.Advances in the newest version of ASME B31G-2009[J].Natural Gas Industry,2011,31(8):112-115.
[4]QING S T,FAN X X,YANG Z J,et al.Application of ASME B31G-2012 to the residual strength evaluation of pipelines with volumetric defects[J].Natural Gas Industry,2016,36(5):115-121.
[5]LAW M,KIRSTEIN O,LUZIN V.Effect of residual stress on the integrity of a branch connection[J].International Journal of Pressure Vessels and Piping,2012(5),96-97.
[6]郑恒伟,杨国欣,王东哲.腐蚀管道剩余强度数值分析及ANSYS二次开发[J].功能材料,2018,49(11):11075-11079. ZHENG Hengwei,YANG Guoxin,WANG Dongzhe.Analysis of residual for corroded pipeline and customized secondary development of ANSYS software[J].Journal of Functional Materials,2018,49(11):11075-11079.
[7]杨燕华,顾晓婷,张旭,等.高级X100输气管道含双点腐蚀缺陷的剩余强度研究[J].腐蚀与防护,2021,42(4):48-53. YANG Yanhua,GU Xiaoting,ZHANG Xu,et al.Study on residual strength of hight-grade X100 Gas pipeline with double point corrosion defects[J].Corrosion & Protection,2021,42(4):48-53.
[8]马廷霞,潘玉林,黄文,等.含等壁厚体积型缺陷油气管道的剩余强度评价[J].材料保护,2020,53(5):34-41. MA Tingxia,PAN Yulin,HUANG Wen,et al.Residual strength evaluation of oil and gas pipeline with volumetric defects of the same thickness[J].Materials Protection,2020,53(5):34-41.
[9]臧雪瑞,顾晓婷,王秋妍.含腐蚀缺陷X100输气管道的剩余强度研究[J].材料保护,2019,52(9):125-131. ZANG Xuerui,GU Xiaoting,WANG Qiuyan.Research on residual strength of X100 pipeline with corrosion defects[J].Materials Protection,2019,52(9):125-131.
[10]王艺斐,苏春,谢明江.基于二元逆高斯过程的腐蚀输油管道剩余寿命预测[J].东南大学学报(自然科学版),2020,50(6):1038-1044. WANG Yifei,SU Chun,XIE Mingjiang.Remaining useful life prediction of corroded oil pipelines based on binary inverse Gaussian process[J].Journal of Southeast University(Natural Science Edition),2020,50(6):1038-1044.
[11]骆正山,肖雨,王小完.基于IWOA-PNN模型的管道焊缝腐蚀剩余强度预测[EB/OL].(2021-12-06)[2022-03-25].https://doi.org/10.13637/j.issn.1009-6094.2021.1785. LUO Zhengshan,XIAO Yu,WANG Xiaowan.Prediction of remaining strength of pipeline weld corrosion based on IWOA-PNN model[EB/OL].(2021-12-06)[2022-03-25].https://doi.org/10.13637/j.issn.1009-6094.2021.1785.
[12]徐鲁帅,凌晓,马娟娟,等.基于DE-BPNN模型的含腐蚀缺陷管道失效压力预测[J].中国安全生产科学技术,2021,17(3):91-96. XU Lushuai,LING Xiao,MA Juanjuan,et al.Prediction on failure pressure of pipeline containing corrosion defects based on DE-BPNN[J].Journal of Safety Science and Technology,2021,17(3):91-96.
[13]张新生,张玥.基于Lasso-PSO-BP神经网络的腐蚀管道失效压力的预测[J].材料保护,2020,53(4):46-52. ZHANG Xinsheng,ZHANG Yue.Prediction of failure pressure of corroded pipeline based on Lasso-PSO-BP neural network[J].Materials Protection,2020,53(4):46-52.
[14]李琴,孙春梅,黄志强,等.兰成渝腐蚀管道失效压力的GA-BP神经网络组合预测方法[J].中国安全生产科学技术,2015,11(11):83-89. LI Qin,SUN Chunmei,HUANG Zhiqiang,et al.Combined forecasting method of GA-BP neural network for failure pressure of Lan-Cheng-Yu corroded pipelines[J].Journal of Safety Science and Technology,2015,11(11):83-89.
[15]贾思奇,郄彦辉,李煜彤,等.基于遗传-神经网络算法的含均匀腐蚀缺陷油气管线爆破压力预测研究[J].中国安全生产科学技术,2020,16(12):105-110. JIA Siqi,QIE Yanhui,LI Yutong,et al.Research on burst pressure prediction of oil and gas pipelines with uniform corrosion defects based on GA-BPNNs algorithm[J].Journal of Safety Science and Technology,2020,16(12):105-110.
[16]凌晓,徐鲁帅,高甲程,等.基于IFA-BPNN的长输管道外腐蚀速率预测[J].表面技术,2021,50(4):285-293. LING Xiao,XU Lushuai,GAO Jiacheng,et al.Prediction of external corrosion rate of oil pipeline based on improved IFA-BPNN[J].Surface Technology,2021,50(4):285-293.
[17]XIE M J,LI Z S,ZHAO J L,et al.A prognostics method based on back propagation neural network for corroded pipelines[J].Micromachines,2021,12(12):1568.
[18]SURYA V,SENTHILSELVI A.Identification of oil authenticity and adulteration using deep long short term memory based neural network with seagull optimization algorithm[J].Neural Computing and Applications,2022,34:7611-7625.
[19]RAFASH A G H,SAEED E M H,TALIB A S M.Development of an enhanced scatter search algorithm using discrete chaotic Arnold’s cat map[J].Eastern-European Journal of Enterprise Technologies,2021,6(4(114)):15-20.
[20]金保明,卢光毅,王伟,等.基于弹性梯度下降算法的BP神经网络降雨径流预报模型[J].山东大学学报(工学版),2020,50(3):117-124. JIN Baoming,LU Guangyi,WANG Wei,et al.Research on BP neural network rainfall runoff forecasting model based on elastic gradient descent algorithm[J].Journal of Shandong University(Engineering,2020,50(3):117-124.
[21]MA B,SHUAI J,LIU D X,et al.Assessment on failure pressure of high strength pipeline with corrosion defects[J].Engineering Failure Analysis,2013,32:209-219.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期: 2022-03-28
* 基金项目: 国家自然科学基金项目(41877527);陕西省社会科学基金项目(2018S34)
作者简介: 骆正山,博士,教授,主要研究方向为管理科学与工程、信息管理与信息系统、油气管道风险评估等。
通信作者: 彭红发,硕士研究生,主要研究方向为油气管道风险评估、建模与预测。
更新日期/Last Update: 2023-02-14