|本期目录/Table of Contents|

[1]冯燕,刘剑.基于BP神经网络的矿车运行时矿井摩擦阻力的预测*[J].中国安全生产科学技术,2023,19(1):54-59.[doi:10.11731/j.issn.1673-193x.2023.01.008]
 FENG Yan,LIU Jian.Prediction of mine friction resistance during tramcar running based on BP neural network[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2023,19(1):54-59.[doi:10.11731/j.issn.1673-193x.2023.01.008]
点击复制

基于BP神经网络的矿车运行时矿井摩擦阻力的预测*
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
19
期数:
2023年1期
页码:
54-59
栏目:
职业安全卫生管理与技术
出版日期:
2023-01-31

文章信息/Info

Title:
Prediction of mine friction resistance during tramcar running based on BP neural network
文章编号:
1673-193X(2023)-01-0054-06
作者:
冯燕刘剑
(1.辽宁工程技术大学 安全科学与工程学院,辽宁 葫芦岛 125105;
2.辽宁工程技术大学 矿山热动力灾害与防治教育部重点实验室,辽宁 葫芦岛 125105)
Author(s):
FENG Yan LIU Jian
(1.College of Safety Science and Engineering,Liaoning Technical University,Huludao Liaoning 125105,China;
2.Key Laboratory of Mine Thermo-motive Disaster and Prevention,Ministry of Education,Liaoning Technical University,Huludao Liaoning 125105,China)
关键词:
BP神经网络活塞风效应矿井摩擦阻力动网格技术
Keywords:
BP neural network piston wind effect mine friction resistance dynamic grid technique
分类号:
X936
DOI:
10.11731/j.issn.1673-193x.2023.01.008
文献标志码:
A
摘要:
为了快速有效地确定矿车等运输设备在巷道内运行时矿井摩擦阻力的变化情况,克服模拟软件计算量和现场实测工作量大的问题,以巷道风流速度、矿车运行速度、阻塞比、矿车长度4个矿车运行时巷道摩擦阻力的影响因素作为切入点,采用动网格技术模拟得到矿车在巷道内运行时有关矿井摩擦阻力的数据,以此为样本构建基于BP神经网络的矿井摩擦阻力预测模型,运用MATLAB软件进行网络训练,并将BP神经网络预测值与FLUENT模拟值进行对比。研究结果表明:BP神经网络结构比较简单,能以较快速度收敛,预测值与模拟值最大误差在7%以内,该神经网络模型用于求解矿车等运输设备在巷道内运行时摩擦阻力的变化情况是可行的。
Abstract:
In order to quickly and effectively determine the change of mine friction resistance when the tramcar and other transportation equipment are running in the mine roadway,and overcome the problems of large amount of calculation in simulation software and large amount of field measurement workload,four influencing factors of roadway friction resistance including the roadway wind speed,tramcar running speed,blocking ratio and tramcar length were taken as the starting point,and the data about the mine friction resistance when the tramcar ran in the roadway were obtained through the dynamic grid technique simulation.Taking this as a sample,a prediction model of mine friction resistance based on BP neural network was constructed,then the network was trained with MATLAB software,the predicted value of the BP neural network is compared with the FLUENT simulation value.The results showed that the BP neural network had simple structure and fast convergence speed,and the error between the predicted values and the simulated values was within 7%.The neural network model is feasible to solve the change of friction resistance of tramcar and other transportation equipment when they are running in the roadway.

参考文献/References:

[1]王从陆,吴超.基于移动参考框架的矿内运输工具活塞风数值模拟[J].煤炭学报,2007,44(8):838-841. WANG Conglu,WU Chao.Numerical simulation of piston wind due to mine conveyance based on motion reference frame[J].Journal of China Coal Society,2007,44(8):838-841.
[2]王从陆,吴超,王卫军.活塞风数值模拟及在矿内运输巷道中的应用[J].安全与环境学报,2007,7(3):120-123. WANG Conglu,WU Chao,WANG Weijun.Numerical simulation of piston wind and its application in the ventilation of mining tunnels[J].Journal of Safety and Environment,2007,7(3):120-123.
[3]邬长福,邓权龙,李乐农.基于动网格井巷活塞风影响因素的数值模拟研究[J].中国矿业,2015,24(8):110-114. WU Changfu,DENG Quanlong,LI Lenong.Numerical simulation of laneway piston pind under different influence factors based on dynamic mesh[J].China Mining Magazine,2015,24(8):110-114.
[4]王海桥,田峰,黄俊歆,等.矿井井筒提升设备绕流的数值模拟[J].中国安全科学学报,2006,16(9):29-33. WANG Haiqiao,TIAN Feng,HUANG Junxin,et al.Numerical simulationof airflow around hoisting equipment in mine shaft[J].China Safety Science Journal,2006,16(9):29-33.
[5]彭云.矿井活塞风效应数值模拟[J].黑龙江科技大学学报,2015,25(2):143-147. PENG Yun.Research on numerical simulation on mine piston wind effect[J].Journal of Heilongjiang University of Science and Technology,2015,25(2):143-147.
[6]彭云,赵伏军,黄寿元,等.不同装载情况下矿井活塞风效应的数值模拟[J].黑龙江科技大学学报,2014,24(1):30-33. PENG Yun,ZHAO Fujun,HUANG Shouyuan,et al.Numerical simulation study on mine piston wind effect under different loading conditions[J].Journal of Heilongjiang University of Science and Technology,2014,24(1):30-33.
[7]张宏杰,刘彦青,姚鹏飞,等.井下防爆胶轮车运行对矿井通风阻力影响的定量分析[J].煤矿安全,2017,48(7):184-187. ZHANG Hongjie,LIU Yanqing,YAO Pengfei,et al.Quantitative analysis on effect of running process of explosion-proof rubber-tyred car on resistance of mine ventilation system[J].Safety in Coal Mines,2017,48(7):184-187.
[8]王文才,魏丁一,王振涛,等.Y形巷道活塞风效应研究[J].煤炭技术,2017,36(7):145-147. WANG Wencai,WEI Dingyi,WANG Zhentao,et al.Study on piston wind effect based on Y-type tunnel[J].Coal Technology,2017,36(7):145-147.
[9]王文才,魏丁一,许哲.矿井立井提升设备活塞风动力效应研究[J].中国煤炭,2017,43(5):74-78. WANG Wencai,WEI Dingyi,XU Zhe.Study on piston wind dynamic effect of hoist equipment in mine shaft[J].China Coal,2017,43(5):74-78.
[10]王文才,魏丁一,赵晓坤.基于FLUENT的矿井巷道活塞风效应研究[J].中国煤炭,2016,42(9):91-95. WANG Wencai,WEI Dingyi,ZHAO Xiaokun.Research on piston wind effect of mine roadway based on FLUENT[J].China Coal,2016,42(9):91-95.
[11]魏宁,刘剑.基于BP神经网络的矿井摩擦阻力系数预测[J].矿业安全与环保,2018,45(1):57-60. WEI Ning,LIU Jian.Prediction of mine frictional resistance coefficient based on BP neural network[J].Mining Safety and Environmental Protection,2018,45(1):57-60.
[12]刘彦青.基于巷道摩擦阻力系数BP神经网络预测模型的矿井风网风量预测研究[J].矿业安全与环保,2021,48(2):101-106. LIU Yanqing.Study on the air quantity of mine ventilation network based on BP neural network prediction model of friction resistance coefficient in roadway[J].Mining Safety and Environmental Protection,2021,48(2):101-106.
[13]张攀,周志强,刘剑.利用BP神经网络确定巷道摩擦阻力系数[J].辽宁工程技术大学学报,2003,25(4):536-537. ZHANG Pan,ZHOU Zhiqiang,LIU Jian.Applying BP neural network model to calculate coefficient of frictional resistance of roadways[J].Journal of Liaoning Technical University(Natural Science),2003,25(4):536-537.
[14]刘剑,曲敏,黄德,等.应急状态下矿井瓦斯爆炸致灾因子传播快速分类器研究[J].中国安全生产科学技术,2020,16(8):11-17. LIU Jian,QU Min,HUANG De,et al.Research on fast classifier for propagation of hazard factors in mine gas explosion under emergency state[J].Journal of Safety Science and Technology,2020,16(8):11-17.
[15]孙帆,施学勤.基于MATLAB的BP神经网络设计[J].计算机与数字工程,2007,35(8):124-126. SUN Fan,SHI Xueqin.Design of BP neural network based on MATLAB[J].Computer and Digital Engineering,2007,35(8):124-126.

相似文献/References:

[1]汪送,王瑛,李超.BP神经网络在航空机务人员本质安全程度评价中的应用[J].中国安全生产科学技术,2010,6(6):35.
[2]王悦,薛伟.基于BP神经网络的东北贮木场火灾危险等级评定[J].中国安全生产科学技术,2013,9(2):173.
 WANG Yue,XUE Wei.Evaluation of fire danger rating of northeast lumberyard based on BP neural network[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(1):173.
[3]孙赟,李明涛,姚晓晖.基于BP神经网络人群流量预测的实现[J].中国安全生产科学技术,2010,6(2):61.
 SUN Yun,LI Ming-tao,YAO Xiao-hui.Imphement of crowd flow prediction based on BP neural network[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2010,6(1):61.
[4]高宗军,付青,郑秋霞,等.BP和Elman神经网络在砂土液化预测中的研究[J].中国安全生产科学技术,2013,9(6):58.[doi:10.11731/j.issn.1673-193x.2013.06.011]
 GAO Zong jun,FU Qing,ZHENG Qiu xia,et al.Study on forecasting of sand liquefaction by using BP neural and Elamn neural networks[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(1):58.[doi:10.11731/j.issn.1673-193x.2013.06.011]
[5]易高翔,潘长城,郭建中,等.基于多源数据融合的石油罐区安全监控模型[J].中国安全生产科学技术,2014,10(3):90.[doi:10.11731/j.issn.1673-193x.2014.03.015]
 YI Gao xiang,PAN Chang cheng,GUO Jian zhong,et al.Study on safety monitoring model of petroleum tank farm based on multisource data fusion[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(1):90.[doi:10.11731/j.issn.1673-193x.2014.03.015]
[6]陈建宏,郑荣凯,陈 浩.基于PCA和BP神经网络边坡稳定性分析[J].中国安全生产科学技术,2014,10(5):142.[doi:10.11731/j.issn.1673-193x.2014.05.023]
 CHEN Jianhong,ZHENG Rongkai,CHEN Hao.Analysis on slope stability based on combination of PCA and BP neural network[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(1):142.[doi:10.11731/j.issn.1673-193x.2014.05.023]
[7]宋新明,居 勇,曾 鸣,等.基于神经网络的供电企业安全文化评价研究*[J].中国安全生产科学技术,2009,5(4):55.
 SONG Xin ming,JU Yong,ZENG Ming,et al.Research on the evaluation of power supply enterprises safety culture based on neural network[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2009,5(1):55.
[8]刘业娇,田志超,刘进才.BP神经网络在矿井本质安全程度评价中的应用[J].中国安全生产科学技术,2009,5(5):102.
 LIU Ye jiao,TIAN Zhi chao,LIU Jin cai.Application of BP neural network in the field of evaluation on intrinsical safety degree in mine[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2009,5(1):102.
[9]潘长城,王时彬,王如君,等.基于信息融合与GM的石油罐区安全监控预测模型[J].中国安全生产科学技术,2014,10(7):21.[doi:10.11731/j.issn.1673-193x.2014.07.004]
 PAN Chang-cheng,WANG Shi-bin,WANG Ru-jun,et al.Petroleum tank farm safety monitoring forecasting model based on information fusion and GM[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(1):21.[doi:10.11731/j.issn.1673-193x.2014.07.004]
[10]陈建宏,陈浩,郑荣凯,等.基于物元分析与PCA的部队汽车分队安全评价模型[J].中国安全生产科学技术,2014,10(7):180.[doi:10.11731/j.issn.1673-193x.2014.07.032]
 CHEN Jian-hong,CHEN Hao,ZHENG Rong-kai,et al.Safety assessment model for military vehicle units based on combination of matter element analysis and PCA[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(1):180.[doi:10.11731/j.issn.1673-193x.2014.07.032]

备注/Memo

备注/Memo:
收稿日期: 2021-08-23
* 基金项目: 国家自然科学基金项目(51574142,51904143,51774169);山东省自然科学基金项目(ZR2020QE125)
作者简介: 冯燕,硕士研究生,主要研究方向为矿井通风。
通信作者: 刘剑,博士,教授,主要研究方向为矿井通风与防灭火。
更新日期/Last Update: 2023-02-14