|本期目录/Table of Contents|

[1]张化进,吴顺川,张中信,等.边坡稳定性自动机器学习预测方法研究*[J].中国安全生产科学技术,2023,19(1):35-40.[doi:10.11731/j.issn.1673-193x.2023.01.005]
 ZHANG Huajin,WU Shunchuan,ZHANG Zhongxin,et al.Research on automatic machine learning prediction method of slope stability[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2023,19(1):35-40.[doi:10.11731/j.issn.1673-193x.2023.01.005]
点击复制

边坡稳定性自动机器学习预测方法研究*
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
19
期数:
2023年1期
页码:
35-40
栏目:
学术论著
出版日期:
2023-01-31

文章信息/Info

Title:
Research on automatic machine learning prediction method of slope stability
文章编号:
1673-193X(2023)-01-0035-06
作者:
张化进吴顺川张中信孙俊龙韩龙强
(1.昆明理工大学 国土资源工程学院,云南 昆明 650093;
2.自然资源部 高原山地地质灾害预报预警与生态保护修复重点实验室,云南 昆明 650093)
Author(s):
ZHANG Huajin WU Shunchuan ZHANG Zhongxin SUN Junlong HAN Longqiang
(1.Faculty of Land Resource Engineering,Kunming University of Science and Technology,Kunming Yunnan 650093,China;
2.Key Laboratory of Geohazard Forecast and Geoecological Restoration in Plateau Mountainous Area,Ministry of Natural Resources of the People’s Republic of China,Kunming Yunnan 650093,China)
关键词:
边坡工程稳定性预测机器学习自动机器学习
Keywords:
slope engineering stability prediction machine learning automatic machine learning
分类号:
TU457;X947
DOI:
10.11731/j.issn.1673-193x.2023.01.005
文献标志码:
A
摘要:
为了简便有效地评估边坡稳定性状态,针对目前传统机器学习的算法选择与超参数优化等难题,提出1种边坡稳定性自动机器学习预测方法。首先,简要介绍5种主流开源自动机器学习框架;其次,以422组边坡稳定性样本为数据集,进行自动机器学习纯自动化训练,并与传统机器学习对比分析模型的性能与耗时;最后,综合讨论与比较典型自动机器学习框架的特性。研究结果表明:自动机器学习预测效果总体上优于传统机器学习,提升边坡稳定性预测准确率和稳健性,且无需人为干预。研究结果可为岩土工作人员准确可靠地评价边坡稳定性提供便捷条件。
Abstract:
In order to evaluate the slope stability state easily and effectively,an automatic machine learning prediction method of slope stability was proposed aiming at the problems of algorithm selection and hyperparameter optimization faced by the current traditional machine learning.Firstly,5 mainstream open source automatic machine learning frameworks were briefly introduced.Secondly,422 groups of slope stability samples were taken as the data set to carry out the pure automatic training of automatic machine learning,and the performance and time consumption of the model were compared with traditional machine learning.Finally,the characteristics of typical automatic machine learning frameworks were comprehensively discussed and compared.The results showed that the prediction effect of automatic machine learning was generally better than traditional machine learning,improved the prediction accuracy and robustness of slope stability,and did not require the human intervention.The research results can provide convenient conditions for geotechnical staff to evaluate the slope stability accurately and reliably.

参考文献/References:

[1]KURTZ W,LAPIN A,SCHILLING O,et al.Integrating hydrological modelling,data assimilation and cloud computing for real-time management of water resources[J].Environmental Modelling and Software,2017,93:418-435.
[2]张豪,罗亦泳.基于人工免疫算法的边坡稳定性预测模型[J].煤炭学报,2012,37(6):911-917. ZHANG Hao,LUO Yiyong.Prediction model for slope stability based on artificial immune algorithm[J].Journal of China Coal Society,2012,37(6):911-917.
[3]RUKHAIYAR S,ALAM M N,SAMADHIYA N K.A PSO-ANN hybrid model for predicting factor of safety of slope[J].International Journal of Geotechnical Engineering,2018,12(6):556-566.
[4]HOANG N D,PHAM A D.Hybrid artificial intelligence approach based on metaheuristic and machine learning for slope stability assessment:a multinational data analysis[J].Expert Systems with Applications,2016,46:60-68.
[5]DAFFLON J,PINAYA W H L,TURKHEIMER F,et al.An automated machine learning approach to predict brain age from cortical anatomical measures[J].Human Brain Mapping,2020,41(13):3555-3566.
[6]HUTTER F,LUCKE J,SCHMIDTTHIEME L.Beyond manual tuning of hyperparameters[J].KI-Künstliche Intelligenz,2015,29(4):329-337.
[7]JIN H,SONG Q,HU X.Auto-Keras:an efficient neural architecture search system[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2019:1946-1956.
[8]BUDJAC R,NIKMON M,SCHREIBER P,et al.Automated machine learning overview[J].Research Papers Faculty of Materials Science and Technology Slovak University of Technology,2019,27(45):107-112.
[9]FEURER M,KLEIN A,EGGENSPERGER K,et al.Efficient and robust automated machine learning[J].Advances in Neural Information Processing Systems,2015,28:1-9.
[10]PAVEL B B,CARLOS S,JOAQUIM P D C.Ranking learning algorithms:using IBL and meta-learning on accuracy and time results[J].Machine Learning,2003,50(3):251-277.
[11]ELSHAWI R,SAKR S.Automated machine learning:techniques and frameworks[C]//European Big Data Management and Analytics Summer School.Cham:Springer,2019:40-69.
[12]OLSON R S,BARTLEY N,URBANOWOCZ R J,et al.Evaluation of a tree-based pipeline optimization tool for automating data science[C]//Proceedings of the Genetic and Evolutionary Computation Conference.2016:485-492.
[13]LE T T,FU W,MOORE J H.Scaling tree-based automated machine learning to biomedical big data with a feature set selector[J].Bioinformatics,2020,36(1):250-256.
[14]LEDELL E,POIRIER S.H2O AutoML:scalable automatic machine learning[C]//Proceedings of the AutoML Workshop at ICML.2020:1-16.
[15]PRESTON P.Auto_ml:automated machine learning for production and analytics[EB/OL].(2018-02-22)[2021-08-22].https://pypi.org/project/auto_ml/.
[16]王超.工程高边坡稳定性预测方法研究[D].北京:北京交通大学,2009.
[17]ZHANG H,WU S,ZHANG X,et al.Slope stability prediction method based on the margin distance minimization selective ensemble[J].Catena,2022,212:106055.
[18]STONE M.Cross-validatory choice and assessment of statistical predictions[J].Journal of the Royal Statistical Society,1974,36(2):111-133.

相似文献/References:

[1]宋常军,王健,吴立坚.山区公路堑坡滑坡灾害实时监控研究[J].中国安全生产科学技术,2014,10(9):95.[doi:10.11731/j.issn.1673-193x.2014.09.016]
 SONG Chang-jun,WANG Jian,WU Li-jian.Research on real-time monitoring for landslide disasters at cutting slopes of mountainous highways[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(1):95.[doi:10.11731/j.issn.1673-193x.2014.09.016]
[2]吴顺川,李浚弘,张化进,等.考虑岩土体剪胀特性的边坡稳定性分析*[J].中国安全生产科学技术,2020,16(10):108.[doi:10.11731/j.issn.1673-193x.2020.10.017]
 WU Shunchuan,LI Junhong,ZHANG Huajin,et al.Analysis on slope stability considering shear dilatation characteristics of rock and soil mass[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2020,16(1):108.[doi:10.11731/j.issn.1673-193x.2020.10.017]
[3]冯忠居,李德,江冠,等.基于可靠度理论的高边坡二次开挖稳定性分析*[J].中国安全生产科学技术,2023,19(8):130.[doi:10.11731/j.issn.1673-193x.2023.08.019]
 FENG Zhongju,Li De,JIANG Guan,et al.Stability analysis on of secondary excavation of high slope based on reliability theory[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2023,19(1):130.[doi:10.11731/j.issn.1673-193x.2023.08.019]
[4]张克利,马海涛,张建全,等.基于GB-SAR的矿山边坡局部变形演化与失稳预测*[J].中国安全生产科学技术,2024,20(4):85.[doi:10.11731/j.issn.1673-193x.2024.04.012]
 ZHANG Keli,MA Haitao,ZHANG Jianquan,et al.Local deformation evolution and instability prediction of mining slopes based on GB-SAR[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2024,20(1):85.[doi:10.11731/j.issn.1673-193x.2024.04.012]

备注/Memo

备注/Memo:
收稿日期: 2021-09-10
* 基金项目: 国家重点研发计划项目(2017YFC0805303);云南省创新团队项目(202105AE160023)
作者简介: 张化进,博士研究生,主要研究方向为岩土工程稳定性分析。
通信作者: 吴顺川,博士,教授,主要研究方向为岩土工程与采矿工程。
更新日期/Last Update: 2023-02-14