|本期目录/Table of Contents|

[1]姚竣瀚,郑威,王海清,等.高要求模式SIS异型冗余结构PFH计算模型*[J].中国安全生产科学技术,2022,18(11):105-111.[doi:10.11731/j.issn.1673-193x.2022.11.015]
 YAO Junhan,ZHENG Wei,WANG Haiqing,et al.PFH calculation model of SIS with diverse redundant architecture in high-demand mode[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(11):105-111.[doi:10.11731/j.issn.1673-193x.2022.11.015]
点击复制

高要求模式SIS异型冗余结构PFH计算模型*
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
18
期数:
2022年11期
页码:
105-111
栏目:
职业安全卫生管理与技术
出版日期:
2022-11-30

文章信息/Info

Title:
PFH calculation model of SIS with diverse redundant architecture in high-demand mode
文章编号:
1673-193X(2022)-11-0105-07
作者:
姚竣瀚郑威王海清毛奇
(1.中国石油大学(华东) 机电工程学院,山东 青岛 266580;
2.杭州汉德质量认证服务有限公司 上海分公司,上海 201100)
Author(s):
YAO Junhan ZHENG Wei WANG Haiqing MAO Qi
(1.College of Mechanical and Electrical Engineering,China University of Petroleum (East China),Qingdao Shandong 266580,China;
2.Hangzhou TUV Nord Co.,Ltd.(Shanghai Branch),Shanghai 201100,China)
关键词:
高要求操作模式安全仪表系统(SIS)共因失效异型冗余结构每小时危险失效平均频率(PFH)
Keywords:
high-demand operation mode safety instrumented system (SIS) common cause failure diverse redundancy architecture average frequency of a dangerous failure per hour (PFH)
分类号:
X913.4
DOI:
10.11731/j.issn.1673-193x.2022.11.015
文献标志码:
A
摘要:
为了满足石油化工生产中对高要求操作模式下采用异型设备的安全联锁回路进行SIL定级的需求,避免因误用同型PFH公式导致SIL等级评估误差。考虑各通道差异性及其失效顺序的遍历性,以MonteCarlo仿真值为多元线性回归模型观察样本,以改进共因失效部分多样性修正因子确定方法,提出异型KooN冗余结构每小时危险失效平均频率(PFH)的计算公式;比较该模型独立失效部分与异型1oo2结构Markov模型PFH结果,并分别将该模型和传统同型PFH公式应用于海上采油平台高完整性压力保护系统(HIPPS)异型关断阀子系统的比较分析。研究结果表明:在不同检测周期内,所提出的PFH计算模型与Markov模型PFH计算结果相对误差均保持在10-3数量级;但当检测周期大于3 a时,使用同型PFH公式会出现对HIPPS子系统SIL等级的误判,造成井口压力联锁保护功能过保护或欠保护。研究结果有助于生产单位准确评估联锁保护风险和设备维护投入。
Abstract:
In order to meet the requirements for safety integrity level (SIL) grading of safety interlock circuits adopting diverse equipment under the high-demand operating mode of petrochemical production,and avoid the SIL rating error due to the misuse of PFH formula with same type,considering the difference between the channels and the ergodicity of failure sequence,the MonteCarlo simulation values were taken as the observation samples of the multiple linear regression model,so as to improve the method for determining the partial diversity correction factor of the common cause failure,and a calculation formula for the average frequency of a dangerous failure per hour (PFH) of the diverse KooN redundant architecture was proposed.The independent failure part of the model was compared with PFH results of the diverse 1oo2 structure Markov model,then the model and the traditional identical PFH formula were respectively applied in the comparative analysis on the diverse shut-off valve subsystem in the high integrity pressure protection system (HIPPS) of offshore oil production platform.The results showed that the relative error of PFH calculation results between the proposed PFH calculation model and the Markov model were all maintained in the order of 10-3 in different test periods.But when the test period was more than 3 years,the use of identical PFH formula would cause the misjudgment on the SIL level of the HIPPS subsystem,causing the wellhead pressure interlock protection function to be over-protected or under-protected.The research results are helpful for production plants to accurately assess the risk of interlock protection and equipment maintenance investment.

参考文献/References:

[1]IEC.Functional safety-Safety instrumented systems for the process industry sector:IEC 61511—2016[S].Geneva:IEC,2016.
[2]KINGAG.SIL determination:Recognising and handling high demand mode scenarios[J].Process Safetyand Environmental Protection,2014,92(4):324-328.
[3]IEC.Functional safety of electric/electronic/programmable electronic safety-related systems:IEC 61508—2010[S].Geneva:IEC,2010.
[4]JIN H,LUNDTEIGEN M A,RAUSAND M.New PFH-formulas for k-out-of-n:F-systems[J].Reliability Engineering & System Safety,2013,111:112-118.
[5]INNAL F,DUTUIT Y,CHEBILA M.Safety and operational integrity evaluation and design optimization of safety instrumented systems[J].Reliability Engineering & System Safety,2015,134:32-50.
[6]CHEBILA M,INNAL F.Generalized analytical expressions for safety instrumented systems’ performance measures:PFDavg and PFH[J].Journal of Loss Prevention in the Process Industries,2015,34:167-176.
[7]ZHAO X Q,OLAF M,GREGORY B.Verification of safety integrity level of high demand system based on Stochastic Petri Nets and Monte Carlo Simulation[J].Reliability Engineering and System Safety,2019,184:258-265.
[8]FU J M,LI H H,CHI Y,et al.nSIL evaluation and sensitivity study of diverse redundant structure[J].Reliability Engineering & System Safety,2021,210(2):107518.
[9]王海清,乔丹菊,刘祥妹,等.异型冗余设备KooN结构通用PFD计算模型[J].中国安全科学学报,2016,26(8):90-94. WANG Haiqing,QIAO Danju,LIU Xiangmei,et al.Model for calculating generalizing PFD of non-identical redundant KooN configurations[J].China Safety Science Journal,2016,26(8):90-94.
[10]DING L,WANG H,JIANG J,et al.SIL verification for SRS with diverse redundancy based on system degradation using reliability block diagram[J].Reliability Engineering & System Safety,2017,165:170-187.
[11]张哲,王璐,徐长峰,等.基于检验测试策略的PFD模型建立与分析[J].中国安全生产科学技术,2021,17(2):128-134. ZHANG Zhe,WANG Lu,XU Changfeng,et al.Establishment and analysis of PFD model based on proof test strategy[J].Journal of Safety Science and Technology,2021,17(2):128-134.
[12]HAMID J.Generalizing PFD formulas of IEC 61508 for KooN configurations[J].Isa Transactions,2015,55:168-174.
[13]CAI B P,LI W C,LIU Y L,et al.Modeling for evaluation of safety instrumented systems with heterogeneous components[J].Reliability Engineering & System Safety,2021,210(2):107823.
[14]ISA.Safety integrity level (SIL) verification of safety instrumented functions:ISA TR84.00.02—2015[S].Perth:ISA,2015.
[15]付建民,李成美,东静波,等.数据不确定条件下安全仪表系统SIL等级验证方法研究[J].中国石油大学学报(自然科学版),2017,41(3):129-135. FU Jianmin,LI Chengmei,DONG Jingbo,et al.Study on method of SIL verification of safety instrumented systems under data uncertainty [J].Journal of China University of Petroleum (Edition of Natural Science),2017,41(3):129-135.
[16]AZIZPOUR H,LUNDTEIGEN M A.Analysis of simplification in Markov-based models for performance assessment of safety instrumented system[J].Reliability Engineering & System Safety,2019,183:252-260.
[17]BRIAN G.Subsea mechanical HIPPS promise cost-effective,reliable pressure protection[J].Offshore:Incorporating the oilman,2014,74(5):116-118.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期: 2021-09-22
* 基金项目: 国家重点研发计划项目(2019YFB2006305)
作者简介: 姚竣瀚,硕士研究生,主要研究方向为化工安全联锁系统的可靠性建模、优化等。
通信作者: 王海清,博士,教授,主要研究方向为安全仪表系统,工艺灾害分析,报警管理和可靠性RAM分析等。
更新日期/Last Update: 2022-12-11