|本期目录/Table of Contents|

[1]谢谦,董立红,吴雪菲.基于多源数据融合的煤矿工作面瓦斯浓度预测*[J].中国安全生产科学技术,2022,18(11):71-76.[doi:10.11731/j.issn.1673-193x.2022.11.010]
 XIE Qian,DONG Lihong,WU Xuefei.Prediction of gas concentration in coal mining face based on multi-source data fusion[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(11):71-76.[doi:10.11731/j.issn.1673-193x.2022.11.010]
点击复制

基于多源数据融合的煤矿工作面瓦斯浓度预测*
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
18
期数:
2022年11期
页码:
71-76
栏目:
职业安全卫生管理与技术
出版日期:
2022-11-30

文章信息/Info

Title:
Prediction of gas concentration in coal mining face based on multi-source data fusion
文章编号:
1673-193X(2022)-11-0071-06
作者:
谢谦董立红吴雪菲
(1.中煤科工西安研究院(集团)有限公司,陕西 西安 710077;
2.西安科技大学 计算机科学与技术学院,陕西 西安 710054;
3.西安科技大学 能源学院,陕西 西安 710054)
Author(s):
XIE Qian DONG Lihong WU Xuefei
(1.Xi’an Research Institute,China Coal Technology & Engineering Group Corp,Xi’an Shaanxi 710077,China;
2.College of Computer Science & Technology,Xi’an University of Science and Technology,Xi’an Shaanxi 710054,China;
3.College of Energy Science and Engineering,Xi’an University of Science and Technology,Xi’an Shaanxi 710054,China)
关键词:
多源数据融合瓦斯浓度预测长短期记忆神经网络注意力机制
Keywords:
multi-source data fusion gas concentration prediction long-term and short-term memory neural network Attention mechanism
分类号:
X936
DOI:
10.11731/j.issn.1673-193x.2022.11.010
文献标志码:
A
摘要:
为了解决瓦斯浓度预测使用的单一数据在预测中影响还不够深入的问题,提出基于LSTM神经网络的多源数据融合瓦斯浓度预测模型。模型将上隅角瓦斯浓度、采煤机速度、工作面吨煤瓦斯涌出量等不同数据融合作为输入层参数,使用Adam优化算法更新LSTM网络层参数,利用Attention机制突出关键影响瓦斯浓度的因素,开展多源数据融合的瓦斯浓度预测,结合某矿1008工作面的实际数据,分析不同数据在瓦斯浓度预测中的作用。研究结果表明:单变量下的Attention-aLSTM预测效果相比LSTM提升14.2%;多源数据融合下的Attention-aLSTM相比自身提升了5%。
Abstract:
In order to solve the problem that the single data used in gas concentration prediction has not had enough influence in the prediction,a prediction model of gas concentration with multi-source data fusion based on LSTM network was proposed.Different data such as gas concentration at upper corner,shearer speed and gas emission amount per ton of coal in the working face were fused as the input layer parameters,and the Adam optimization algorithm was used to update the LSTM network layer parameters.The Attention mechanism was applied to highlight the key factors affecting gas concentration,and the gas concentration prediction based on multi-source data fusion was carried out.The role of different data in gas concentration prediction was analyzed combined with the actual data of 1008 working face in a mine.The results showed that the prediction effect of Attention-aLSTM under single variable was 14.2% higher than that of LSTM,and the prediction effect of Attention-aLSTM under multi-source data fusion was 5% higher than itself.

参考文献/References:

[1]赖祥威,夏云霓,郑万波,等.基于集成学习的改进灰色瓦斯浓度序列预测[J].中国安全生产科学技术,2021,17(7):16-21. LAI Xiangwei,XIA Yunni,ZHENG Wanbo,et al.Improved grey prediction of gas concentration sequence based on integrated learning[J].Journal of Safety Science and Technology,2021,17(7):16-21.
[2]王雨虹,王淑月,王志中,等.基于改进蝗虫算法优化长短时记忆神经网络的多参数瓦斯浓度预测模型研究[J].传感技术学报,2021,34(9):1196-1203. WANG Yuhong,WANG Shuyue,WANG Zhizhong,et al.Multi-Parameter gas concentration prediction model based on improved locust algorithm to optimize long and short time memory neural network[J].Chinese Journal of Sensors and Actuators,2021,34(9):1196-1203.
[3]王鹏,伍永平,王栓林,等.矿井瓦斯浓度Lagrange-ARIMA实时预测模型研究[J].煤炭科学技术,2019,47(4):141-146. WANG Peng,WU Yongping,WANG Shuanlin,et al.Study on Lagrange-ARIMA real-time prediction model of mine gas concentration[J].Coal Science and Technology,2019,47(4):141-146.
[4]赵美成,贺安民,屈世甲.综采工作面瓦斯数据时间序列预测方法研究[J].工矿自动化,2019,45(6):80-85. ZHAO Meicheng,HE Anmin,QU Shijia.Research on time series prediction method of gas data on fully mechanized mining face[J].Industry and Mine Automation,2019,45(6):80-85.
[5]钱建生,邱春荣,李紫阳,等.深度学习耦合粒子群优化SVM的瓦斯浓度预测[J].煤矿安全,2016,47(11):173-176. QIAN Jiansheng,QIU Chunrong,LI Ziyang,et al.Gas emission quantity prediction based on particle swarm optimization of SVM and deep learning network[J].Safety in Coal Mines,2016,47(11):173-176.
[6]李栋,孙振明,李梅,等.基于混沌粒子群的AWLSSVM瓦斯预测研究[J].煤矿安全,2020,51(8):193-198,205. LI Dong,SUN Zhenming,LI Mei,et al.AWLSSVM gas prediction research based on chaotic particle swarm optimization[J].Safety in Coal Mines,2020,50(8):193-198,205.
[7]郭思雯,陶玉帆,李超.基于时间序列的瓦斯浓度动态预测[J].工矿自动化,2018,44(9):20-25. GUO Siwen,TAO Yufan,LI Chao.Dynamic prediction of gas concentration based on time series[J].Industry and Mine Automation,2018,44(9):20-25.
[8]刘奕君,赵强,郝文利.基于遗传算法优化BP神经网络的瓦斯浓度预测研究[J].矿业安全与环保,2015,42(2):56-60. LIU Yijun,ZHAO Qiang,HAO Wenli.Study of gas concentration prediction based on genetic algorithm and optimizing BP neural network [J].Mining Safety and Environmental Protection,2015,42(2):56-60.
[9]张新建,刘锋,李贤功.基于小波降噪和循环神经网络的煤矿瓦斯浓度预测[J].煤炭技术,2020,39(9):145-148. ZHANG Xinjiang,LIU Feng,LI Xiangong.Coal mine gas concentration prediction based on wavelet denoising and recurrent neural network[J].Coal Technology,2020,39(9):145-148.
[10]李树刚,马莉,潘少波,等.基于循环神经网络的煤矿工作面瓦斯浓度预测模型研究[J].煤炭科学技术,2020,48(1):33-38. LI Shugang,MA Li,PAN Shaobo,et al.Research on prediction model of gas concentration based on RNN in coal mining face[J].Coal Science and Technology,2020,48(1):33-38.
[11]侯丽微,胡珀,曹雯琳.主题关键词信息融合的中文生成式自动摘要研究[J].自动化学报,2019,45(3):530-539. HOU Liwei,HU Po,CAO Wenlin.Chinese-generated automatic abstract research on topic keyword information fusion[J].Acta Automatica Sinica,2019,45(3):530-539.
[12]屈世甲.巷道风速传感器数据实时处理方法[J].煤矿安全,2017,48(2):163-166. QU Shijia.Real-time data processing method of wind speed sensor in roadway[J].Safety in Coal Mines,2017,48(2):163-166.
[13]王苏健,贾澎涛,金声尧.基于随机森林回归的围岩应力插值方法[J].西安科技大学学报,2021,41(2):274-281. WANG Sujian,JIA Pengtao,JIN Shengyao.An interpolation method of surrounding rock stressbased on random forest regression[J].Journal of Xi’an University of Science and Technology,2021,41(2):274-281.
[14]杨丽,吴雨茜,王俊丽,等.循环神经网络研究综述[J].计算机应用,2018,38(S2):1-6,26. YANG Li,WU Yuqian,WANG Junli,et al.Research on recurrent neural network[J].Journal of Computer Applications,2018,38(S2):1-6,26.
[15]刘超,雷晨,李树刚,等.基于CNN-GRU的瓦斯浓度预测模型及应用[J].中国安全生产科学技术,2022,18(9):62-68. LIU Chao,LEI Chen,LI Shugang,et al.Prediction model of gas concentration based on CNN-GRU and its application[J].Journal of Safety Science and Technology,2022,18(9):62-68.
[16]贾澎涛,张智远,梁荣,等.基于PSO-CNN-aBiGRU的瓦斯浓度预测方法[J].矿业研究与开发,2021,41(12):76-81. JIA Pengtao,ZHANG Zhiyuan,LIANG Rong,et al.Gas concentration prediction method based on PSO-CNN-aBiGRU[J].Mining Research and Development,2021,41(12):76-81.
[17]刘莹,杨超宇.基于多因素的LSTM瓦斯浓度预测模型[J].中国安全生产科学技术,2022,18(1):108-113. LIU Ying,YANG Chaoyu.LSTM gas concentration prediction model based on multiple factors[J].Journal of Safety Science and Technology,2022,18(1):108-113.
[18]李明扬,孔芳.融入自注意力机制的社交媒体命名实体识别[J].清华大学学报(自然科学版),2019,59(6):461-467. LI Mingyang,KONG Fang.Combined self-attention mechanism for named entity recognition in social media[J].Journal of Tsinghua University(Science and Technology),2019,59(6):461-467.
[19]刘全,梁斌,徐进,等.一种用于基于方面情感分析的深度分层网络模型[J].计算机学报,2018,41(12):2637-2652. LIU Quan,LIANG Bin,XU Jin,et al.A deep hierarchical neural network model for aspect-based sentiment analysis[J].Chinese Journal of Computers,2018,41(12):2637-2652.
[20]马莉,潘少波,代新冠,等.基于PSO-Adam-GRU的煤矿瓦斯浓度预测模型[J].西安科技大学学报,2020,40(2):363-368. MA Li,PAN Shaobo,DAI Xinguan,et al.Gas concentration prediction model of working face based on PSO-Adam-GRU[J].Journal of Xi’an University of Science and Technology,2020,40(2):363-368.

相似文献/References:

[1]易高翔,潘长城,郭建中,等.基于多源数据融合的石油罐区安全监控模型[J].中国安全生产科学技术,2014,10(3):90.[doi:10.11731/j.issn.1673-193x.2014.03.015]
 YI Gao xiang,PAN Chang cheng,GUO Jian zhong,et al.Study on safety monitoring model of petroleum tank farm based on multisource data fusion[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(11):90.[doi:10.11731/j.issn.1673-193x.2014.03.015]
[2]刘莹,杨超宇.基于多因素的LSTM瓦斯浓度预测模型*[J].中国安全生产科学技术,2022,18(1):108.[doi:10.11731/j.issn.1673-193x.2022.01.017]
 LIU Ying,YANG Chaoyu.LSTM gas concentration prediction model based on multiple factors[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(11):108.[doi:10.11731/j.issn.1673-193x.2022.01.017]
[3]刘超,雷晨,李树刚,等.基于CNN-GRU的瓦斯浓度预测模型及应用*[J].中国安全生产科学技术,2022,18(9):62.[doi:10.11731/j.issn.1673-193x.2022.09.009]
 LIU Chao,LEI Chen,LI Shugang,et al.Prediction model of gas concentration based on CNN-GRU and its application[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(11):62.[doi:10.11731/j.issn.1673-193x.2022.09.009]

备注/Memo

备注/Memo:
收稿日期: 2022-04-03
* 基金项目: 国家重点研发计划项目(2017YFC0804100);陕西省自然科学基础研究计划项目(2019JLM-11);天地科技股份有限公司科技创新创业资金专项项目(2020-TD-ZD002)
作者简介: 谢谦,硕士,研究实习员,主要研究方向为数据挖掘。
更新日期/Last Update: 2022-12-11