|本期目录/Table of Contents|

[1]葛仁望,林正,金卫良,等.基于超声透射特性的密闭容器液位测量与装置设计*[J].中国安全生产科学技术,2022,18(10):223-230.[doi:10.11731/j.issn.1673-193x.2022.10.033]
 GE Renwang,LIN Zheng,JIN Weiliang,et al.Liquid level measurement and device design of closed vessels based on ultrasonic transmission characteristics[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(10):223-230.[doi:10.11731/j.issn.1673-193x.2022.10.033]
点击复制

基于超声透射特性的密闭容器液位测量与装置设计*
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
18
期数:
2022年10期
页码:
223-230
栏目:
职业安全卫生管理与技术
出版日期:
2022-10-31

文章信息/Info

Title:
Liquid level measurement and device design of closed vessels based on ultrasonic transmission characteristics
文章编号:
1673-193X(2022)-10-0223-08
作者:
葛仁望林正金卫良牟彦春李青
(1.中国计量大学 机电工程学院,浙江 杭州 310018;
2.浙江省特种设备科学研究院,浙江 杭州 310020)
Author(s):
GE Renwang LIN Zheng JIN Weiliang MOU Yanchun LI Qing
(1.College of Mechanical and Electrical Engineering,China Jiliang University,Hangzhou Zhejiang 310018,China;
2.Zhejiang Special Equipment Research Institute,Hangzhou Zhejiang 310020,China)
关键词:
透射特性非接触式检测密闭容器在线液位检测
Keywords:
transmission characteristic non-contact detection closed vessel online liquid level detection
分类号:
X915.1;TV698.1+5
DOI:
10.11731/j.issn.1673-193x.2022.10.033
文献标志码:
A
摘要:
针对金属密闭容器内液体液位测量问题,设计1种基于超声透射特性的非接触式液位测量装置。测量装置根据被测容器内液体介质与气体介质透射系数不同的原理,通过超声接收探头回波情况判断容器内液体位置,利用软件与硬件结合,调整超声发射探头与接收探头的放大倍数,实现对不同材料、厚度容器内液位的测量。测量装置可以将所测液位、容器倾斜程度等数据通过上位机、阿里云平台等多方位显示。研究结果表明:该测量装置可测量不同材料、厚度密闭容器内承装液体的液位,所测数据较为稳定,测量误差范围不大于3 mm。
Abstract:
Aiming at the problem of liquid level measurement in the metal closed vessels,a non-contact liquid level measurement device based on the ultrasonic transmission characteristics was designed.According to the principle of different transmission coefficients of liquid medium and gas medium inside the measured vessel,the device judged the position of liquid inside the vessel by the echo of ultrasonic receiving probe.With the combination of software and hardware,the magnification of the ultrasonic transmitting and receiving probes were adjusted to measure the liquid level of vessels with different materials and thicknesses.The measured data of liquid level and vessel inclination could be displayed in many aspects on upper machine,mobile APP,and Ali cloud platform.The results showed that the device could measure the liquid level of loading liquids in the closed vessels with different materials and thicknesses,the measured data was stable,and the measuring error range was within 3 mm.

参考文献/References:

[1]康磊,杨金旭,李建国,等.基于超声波技术的非接触液位开关[J].仪表技术与传感器,2016(4):36-39. KANG Lei,YANG Jinxu,LI Jianguo,et al.Contactless liquid level switch based on ultrasonic technology [J].Instrument Technology and Sensors,2016(4):36-39.
[2]李泽,姜明顺,吕珊珊,等.高精度超声波液位测量系统设计[J].自动化仪表,2018,39(11):56-59. LI Ze,JIANG Mingshun,LYU Shanshan,et al.Design of high precision ultrasonic liquid level measurement system [J].Automation Instrumentation,2018,39(11):56-59.
[3]马玉圣.密闭盒体内液位的超声检测模型及技术研究[D].杭州:浙江大学,2021.
[4]常俊杰,罗文斌,曾雪峰,等.基于空气耦合超声对储油罐液位的检测[J].中国测试,2020,46(9):34-39. CHANG Junjie,LUO Wenbin,ZENG Xuefeng,et al.Detection of liquid level in oil storage tank based on air coupled ultrasound [J].China Test,2020,46(9):34-39.
[5]莫润阳,刘中林.密闭容器内低阻抗液体侧壁式超声液位测量[J].无损检测,2018,40(10):22-25. MO Runyang,LIU Zhonglin.Low impedance liquid side wall ultrasonic liquid level measurement in closed vessels [J].Nondestructive Testing,2018,40(10):22-25.
[6]王萍,刘尧,万凯.密闭容器内两相液体的液位测量[J].天津工业大学学报,2015,34(5):76-80. WANG Ping,LIU Yao,WAN Kai.Liquid level measurement of two-phase liquid in closed vessel [J].Journal of Tianjin University of Technology,2015,34(5):76-80.
[7]PAUL R,SENGUPTA A.Fractional order intelligent controller for single tank liquid level system[C]//2021 IEEE Second International Conference on Control,Measurement and Instrumentation (CMI),IEEE,2021.
[8]SUKHINETS Z A,GULIN A I,PROKOPENKO N N.Intelligent frequency liquid level sensor[C]//2019 International Russian Automation Conference,2019.
[9]徐鸿,郭鹏,田振华,等.非浸入式超声导波液位测量方法研究[J].仪器仪表学报,2017,38(5):1150-1158. XU Hong,GUO Peng,TIAN Zhenhua,et al.Research on non immersion ultrasonic guided wave liquid level measurement method [J].Journal of Instrumentation,2017,38(5):1150-1158.
[10]SAHOO A K,UDGATA S K.A novel ANN based adaptive ultrasonic measurement system for accurate water level monitoring[J].IEEE Transactions on Instrumentation and Measurement,2020,69(6):3359-3369.
[11]DUNLAP M D,CONNOLLY G D,DOBSON J.Modeling and simulation of cast austenitic stainless steel with onscale[C]//2020 IEEE International Ultrasonics Symposium,2020.
[12]张斌.侧入射超声波液体界位检测建模及关键技术研究[D].太原:中北大学,2017.
[13]张斌,刘文怡,魏月娟,等.一种基于超声阻抗和回波能量的液位检测方法[J].传感技术学报,2017,30(11):1625-1629. ZHANG Bin,LIU Wenyi,WEI Yuejuan,et al.A liquid level detection method based on ultrasonic impedance and echo energy [J].Journal of Sensing Technology,2017,30(11):1625-1629.
[14]KAGA Y,JOHGUCHI K.A 180nm CMOS smart ultrasonic water flow meter circuit for IoT smart society[J].Japanese Journal of Applied Physics,2021.
[15]陈远.基于超声波传感的障碍物检测和测距系统设计[D].成都:电子科技大学,2019.
[16]徐春广,李卫彬.超声波检测基础[M].北京:北京理工大学出版社,2021.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期: 2022-05-20
* 基金项目: 浙江省重点研发计划项目(2021C03016,2019C03114)
作者简介: 葛仁望,硕士研究生,主要研究方向为检测技术。
通信作者: 李青,本科,教授,主要研究方向为动态测量与控制、传感技术。
更新日期/Last Update: 2022-11-13