|本期目录/Table of Contents|

[1]薛冰,黎江梁,林谋金,等.氢化锆对太安空中爆炸及热安全性能影响的研究*[J].中国安全生产科学技术,2022,18(9):147-153.[doi:10.11731/j.issn.1673-193x.2022.09.021]
 XUE Bing,LI Jiangliang,LIN Moujin,et al.Study on influence of zirconium hydride on air explosion and thermal safety performance of PETN[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(9):147-153.[doi:10.11731/j.issn.1673-193x.2022.09.021]
点击复制

氢化锆对太安空中爆炸及热安全性能影响的研究*
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
18
期数:
2022年9期
页码:
147-153
栏目:
职业安全卫生管理与技术
出版日期:
2022-09-30

文章信息/Info

Title:
Study on influence of zirconium hydride on air explosion and thermal safety performance of PETN
文章编号:
1673-193X(2022)-09-0147-07
作者:
薛冰黎江梁林谋金马宏昊蒲传金刘向前
(1.西南科技大学 环境与资源学院,四川 绵阳 621010;
2.西南科技大学 工程材料与结构冲击振动四川省重点实验室,四川 绵阳 621010;
3.中国科学技术大学 近代力学系,安徽 合肥 230027)
Author(s):
XUE Bing LI Jiangliang LIN Moujin MA Honghao PU Chuanjin LIU Xiangqian
(1.School of Resources and Environment,Southwest University of Science and Technology,Mianyang Sichuan 621010,China;
2.Shock and Vibration of Engineering Materials and Structures Key Laboratory of Sichuan Province,Southwest University of Science and Technology,Mianyang Sichuan 621010,China;
3.Department of Modern Mechanics,University of Science and Technology of China,Hefei Anhui 230027,China)
关键词:
氢化锆太安空中爆炸热安全性混合炸药
Keywords:
zirconium hydride pentaerythrite tetranitrate (PETN) air explosion thermal safety composite explosive
分类号:
X932
DOI:
10.11731/j.issn.1673-193x.2022.09.021
文献标志码:
A
摘要:
为研究氢化锆对太安空中爆炸及热安全性的影响,分别对氢化锆/太安混合炸药(ZrH2/PETN)和太安单质炸药开展空中爆炸实验和热分析实验,得到相应的压力时程曲线和TG、DSC热分解曲线。研究结果表明:氢化锆的添加会降低混合炸药的压力峰值,但能显著提高其正相作用时间,氢化锆含量为10%、20%时,氢化锆/太安混合炸药的正相冲量与太安相当。同时与纯太安相比,氢化锆/太安混合组分的最大质量损失速率下降约51.07%~60.04%,热爆炸临界温度及自加速分解温度最大提高约8.78%和9.93%,但混合组分中氢化锆的加入并未改变太安的热分解机理,说明氢化锆作为惰性热稀释剂能够改善其热安全性。
Abstract:
To study the influence of zirconium hydride on the explosion and thermal safety performance of pentaerythrite tetranitrate (PETN),the air explosion and thermal analysis experiments of zirconium hydride/PETN composite explosives (ZrH2/PETN) and PETN single compound explosive were carried out respectively,and the corresponding pressure-time history curves and TG,DSC thermal decomposition curves were obtained.The results showed that the addition of zirconium hydride reduced the peak overpressure of the composite explosives,whereas,the positive phase duration increased significantly.When the zirconium-hydride contents were 10% and 20%,the positive phase impulse of zirconium hydride/PETN composite explosives was equivalent to that of PETN.Compared with pure PETN,the maximum mass loss rate of zirconium hydride/PETN decreased by 51.07%~60.04%,and the thermal explosion critical temperature and self-accelerating decomposition temperature maximally increased by 8.78% and 9.93% respectively.However,the addition of zirconium hydride in the mixed component did not change the thermal decomposition mechanism of PETN,which indicated that zirconium hydride as an inert thermal diluent can improve its thermal safety.

参考文献/References:

[1]YANG Y J,ZHAO F Q,YUAN Z F,et al.On the combustion mechanisms of ZrH2 in double-base propellant[J].Physical Chemistry Chemical Physics,2017,19(48):32597.
[2]YU Z S,FANG X,GAO Z R,et al.Mechanical and reaction properties of Al/TiH2/PTFE under Quasi-Static compression[J].Advanced Engineering Materials,2018,20(7):1800019.
[3]于钟深,方向,李裕春,等.TiH2含量对Al/PTFE动态力学性能和撞击感度的影响[J].爆炸与冲击,2019,39(9):44-51. YU Zhongshen,FANG Xiang,LI Yuchun,et al.Effects of TiH2 content on dynamic mechanical properties and impact sensitivity of Al/PTFE[J].Explosion and Shock Waves,2019,39(9):44-51.
[4]罗观,李海波,郑保辉,等.高活性金属在炸药中的应用思考[J].含能材料,2021,29(10):885-887. LUO Guan,LI Haibo,ZHENG Baohui,et al.Application of highly active metals in explosives[J].Chinese Journal of Energetic Materials,2021,29(10):885-887.
[5]CHENG Y F,WU H B,LIU R,et al.Combustion behaviors and explosibility of suspended metal hydride TiH2 dust[J].International Journal of Hydrogen Energy,2020,45(21):12216-12224.
[6]CHENG Y F,SU J,LIU R,et al.Influential factors on the explosibility of unpremixed hydrogen/magnesium dust[J].International Journal of Hydrogen Energy,2020,45(58):34185-34192.
[7]孔祥北,陈思凝,魏利军.储氢材料Kβ-MgH2的动态真空安定性研究[J].中国安全生产科学技术,2020,16(11):19-25. KONG Xiangbei,CHEN Sining,WEI Lijun.Study on dynamic vacuum stability of Kβ-MgH2 hydrogen storage material by DVST [J].Journal of Safety Science and Technology,2020,16(11):19-25.
[8]程扬帆,程尧,周淑清,等.化学敏化的MgH2型储氢乳化炸药抗动压和爆轰性能的研究[J].中国矿业,2016,25(1):146-149,154. CHENG Yangfan,CHENG Yao,ZHOU Shuqing,et al.Anti-pressure ability and explosion characteristics of hydrogen storage emulsion explosive sensitized by MgH2 with chemical method[J].China Mining Magazine,2016,25(1):146-149,154.
[9]CAO W,SONG Q,GAO D,et al.Detonation characteristics of an aluminized explosive added with boron and magnesium hydride[J].Propellants,Explosives,Pyrotechnics,2019,44(11):1393-1399.
[10]张冠永,魏晓安,堵平.含硼储氢合金(Mg(BHx)y)对硝酸酯炸药能量的影响[J].含能材料,2016,24(12):1205-1208. ZHANG Guanyong,WEI Xiaoan,DU Ping.Effect ofboron-containing hydrogen-storage-alloy (Mg(BHx)y) on the explosion energy of nitric ester explosive[J].Chinese Journal of Energetic Materials,2016,24(12):1205-1208.
[11]CUDZILO S,TRZCINSKI W A,PASZULA J,et al.Effect of titanium and zirconium hydrides on the detonation heat of RDX-based explosives-acomparison to aluminium[J].Propellants,Explosives,Pyrotechnics,2018,43(3):280-285.
[12]薛冰,马宏昊,沈兆武,等.氢化钛对RDX空中爆炸性能影响的实验研究[J].兵工学报,2014,35(S2):233-236. XUE Bing,MA Honghao,SHEN Zhaowu,et al.Experimental research on the influence of titanium hydride on air explosion property of RDX [J].ACTA Armamentarh,2014,35(S2):233-236.
[13]YOUNG G,RISHA G A,CONNELL T L,et al.Combustion of HTPB based solid fuels containing metals and metal hydrides with nitrous oxide[J].Propellants,Explosives,Pyrotechnics,2019,44(6):744-750.
[14]DELUCA L T,GALFETTI L,SEVERINI F,et al.Physical and ballistic characterization of AlH3-based space propellants[J].Aerospace Science and Technology,2007,11(1):18-25.
[15]VARIN R A,Li S,CALKA A.Environmental degradation by hydrolysis of nanostructured β-MgH2 hydride synthesized by controlled reactive mechanical milling (CRMM) of Mg[J].Journal of Alloys and Compounds,2004,376(1-2):222-231.
[16]NISHIMIYA N,WADA T,MATSUMOTO A,et al.Hydriding-dehydriding characteristics of aged Mg-10%Ni alloy hydride and water resistance of sol-gel encapsulated composite[J].Journal of Alloys and Compounds,2000,311(2):207-213.
[17]WEI L,SETIJADI E J,AGUEY-ZINSOU K F.Tuning the thermodynamic properties of MgH2 at the nanoscale via a catalyst or destabilizing element coating strategy [J].Journal of Physical Chemistry C,2014,118(48):27781-27792.
[18]卢明,徐晔,肖学章.室内氢气泄漏扩散的数值模拟[J].中国安全生产科学技术,2011,7(8):29-33. LU Ming,XU Ye,XIAO Xuezhang.Numerical simulation on the leakage and diffusion of hydrogen in indoor environment[J].Journal of Safety Science and Technology,2011,7(8):29-33.
[19]魏亚杰,陈利平,姚淼,等.MgH2和Mg(BH4)2对硝酸铵热分解过程的影响[J].火炸药学报,2015,38(1):59-63. WEI Yajie,CHEN Liping,YAO Miao,et al.Effect of MgH2 and Mg(BH4)2 on thermal decomposition process of ammonium nitrate[J].Chinese Journal of Explosives and Propellants,2015,38(1):59-63.
[20]PONOMAREV-STEPNOI N N,BUBELEV V G,GLUSHKOV E S,et al.Estimation of the hydrogen emission from a hydride moderator by measuring the reactivity and using mathematical statistics[J].Atomic Energy,2007,102(2):87-93.
[21]ETHRIDGE N.H.A procedure for reading and smoothing pressure-time data from H.E.and nuclear explosions[R].Maryland,United States:Ballistic Research Laboratories Memorandum Report No.1691,1965.
[22]康建刚,江垚,贺跃辉,等.氢化-脱氢法制备锆粉及其性能表征[J].粉末冶金材料科学与工程,2015(4):655-660. KANG Jiangang,JIANG Yao,HE Yuehui,et al.Fabrication and properties chacterization of Zr powder by hydrogenation-dehydrogenation combined method[J].Materials Science and Englneering of Powder Metallurgy,2015(4):655-660.
[23]胡荣祖,史启祯,高胜利,等.热分析动力学[M].第二版.北京:科学出版社,2008:149-164.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期: 2022-04-10
* 基金项目: 国家自然科学基金项目(11802255,12172313,51874267);工程材料与结构冲击振动四川省重点实验室开放基金项目(18kfgk15)
作者简介: 薛冰,博士,讲师,主要研究方向为含能材料安全技术与爆炸冲击。
通信作者: 林谋金,博士,副教授,主要研究方向为含能材料安全技术与爆炸冲击。
更新日期/Last Update: 2022-10-14