[1]梁跃强,林辰,宫伟东,等.投影寻踪聚类方法在煤与瓦斯突出危险性预测中的应用[J].中国安全生产科学技术,2017,13(1):46-50.
LIANG Yueqiang,LIN Chen,GONG Weidong,et al.Application of projection pursuit clustering method in coal and gas outburst risk prediction [J].Journal of Safety Science and Technology,2017,13(1):46-50.
[2]LI B,WANG E Y,SHANG Zh,et al.Optimize the early warning time of coal and gas outburst by multi-source information fusion method during the tunneling process[J].Process Safety and Environmental Protection,2021,149:839-849.
[3]毕慧杰,任延平,张浩浩,等.基于多因素模式识别的煤与瓦斯突出预测研究[J].中国安全生产科学技术,2017,13(6):98-103.
BI Huijie,REN Yanping,ZHANG Haohao,et al.Research on coal and gas outburst prediction based on multi factor pattern recognition[J].Journal of Safety Science and Technology,2017,13(6):98-103.
[4]郑晓亮,来文豪,薛生.MI和SVM算法在煤与瓦斯突出预测中的应用[J].中国安全科学学报,2021,31(1):75-80.
ZHENG Xiaoliang,LAI Wenhao,XUE Sheng.Application of MI and SVM in coal and gas outburst prediction[J].China Safety Science Journal,2021,31(1):75-80.
[5]RU Y D,LYU X F,GUO J K,et al.Real-Time prediction model of coal and gas outburst[J].Mathematical Problems in Engineering,2020.https://doi.org/10.1155/2020/2432806.
[6]HE M.Agas outburst prediction model based on data mining and information fusion [J].Rev.d’Intelligence Artif.,2019,33(5):379-386.
[7]韩永亮,李胜,胡海永,等.基于改进的GA-ELM煤与瓦斯突出预测模型[J].地下空间与工程学报,2019,15(6):1895 -1902.
HAN Yongliang,LI Sheng,HU Haiyong,et al.Coal and gas outburst prediction model based on improved GA-ELM[J].Journal of Underground Space and Engineering,2019,15(6):1895-1902.
[8]谢国民,单敏柱,刘明.煤与瓦斯突出强度的FOA-SVM预测模型与应用[J].传感技术学报,2016,29(12):1941- 1946.
XIE Guomin,SHAN Minzhu,LIU Ming.FOA-SVM prediction model and application of coal and gas outburst intensity[J].Journal of Sensing Technology,2016,29(12):1941-1946.
[9]陈娟,王献雨,罗玲玲,等.缺失值填补效果:机器学习与统计学习的比较[J].统计与决策,2020,36(17):28-32.
CHEN Juan,WANG Xianyu,LUO Lingling,et al.Missing value filling effect:A comparison between machine learning and statistical learning[J].Statistics and Decision Making,2020,36(17):28-32.
[10]刘凤芹.基于链式方程的收入变量缺失值的多重插补[J].统计研究,2009,26(1):71-77.
LIU Fengqin.Multiple imputation of missing values of income variables based on chain equation[J].Statistical Research,2009,26(1):71-77.
[11]宋亮,万建洲.缺失数据插补方法的比较研究[J].统计与决策,2020,36(18):10-14.
SONG Liang,WAN Jianzhou.Comparative study on missing data interpolation methods[J].Statistics and Decision Making,2020,36(18):10-14.
[12]王刚,武猛猛,王海洋,等.基于能量平衡模型的煤与瓦斯突出影响因素的灵敏度分析[J].岩石力学与工程学报,2015,34(2):238-248.
WANG Gang,WU Mengmeng,WANG Haiyang,et al.Sensitivity analysis of influencing factors of coal and gas outburst based on energy balance model[J].Journal of Rock Mechanics and Engineering,2015,34(2):238-248.
[13]郑晓亮.基于瓦斯含量法的煤与瓦斯突出预测关键技术研究[D].淮南:安徽理工大学,2018.
[14]NUGROHO H,UTAMA N P,SURENDRO K.Class center-based firefly algorithm for handling missing data[J].Journal of Big Data,2021,8(1):1-14.
[1]念其锋,施式亮,李润求.基于网络分析和联系熵的煤与瓦斯突出预测研究[J].中国安全生产科学技术,2014,10(2):22.[doi:10.11731/j.issn.1673-193x.2014.02.004]
NIAN Qi feng,SHI Shi liang,LI Run qiu.Study on coal and gas outburst prediction based on analytic network
process and connection entropy[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(7):22.[doi:10.11731/j.issn.1673-193x.2014.02.004]
[2]温廷新,高倩.基于AE-CLSSA-ELM的煤与瓦斯突出危险性预测模型*[J].中国安全生产科学技术,2023,19(5):73.[doi:10.11731/j.issn.1673-193x.2023.05.010]
WEN Tingxin,GAO Qian.Prediction model of coal and gas outburst risk based on AE-CLSSA-ELM[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2023,19(7):73.[doi:10.11731/j.issn.1673-193x.2023.05.010]
[3]邵良杉,高英超.基于MCMC填补的SSA-SVM煤与瓦斯突出预测模型*[J].中国安全生产科学技术,2023,19(8):94.[doi:10.11731/j.issn.1673-193x.2023.08.014]
SHAO Liangshan,GAO Yingchao.SSA-SVM prediction model of coal and gas outburst based on MCMC filling[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2023,19(7):94.[doi:10.11731/j.issn.1673-193x.2023.08.014]
[4]邵良杉,毕圣昊,王彦彬,等.基于ISSA-ELM的煤与瓦斯突出危险等级预测*[J].中国安全生产科学技术,2023,19(9):76.[doi:10.11731/j.issn.1673-193x.2023.09.011]
SHAO Liangshan,BI Shenghao,WANG Yanbin,et al.Prediction of coal and gas outburst risk level based on ISSA-ELM[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2023,19(7):76.[doi:10.11731/j.issn.1673-193x.2023.09.011]