|本期目录/Table of Contents|

[1]陈健,鲁义,于顺才,等.基于FLAC3D的分层开采再生顶板裂隙控制效果分析*[J].中国安全生产科学技术,2022,18(3):112-117.[doi:10.11731/j.issn.1673-193x.2022.03.017]
 CHEN Jian,LU Yi,YU Shuncai,et al.Analysis on crack control effect of regenerated roof for slicing based on FLAC3D[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(3):112-117.[doi:10.11731/j.issn.1673-193x.2022.03.017]
点击复制

基于FLAC3D的分层开采再生顶板裂隙控制效果分析*
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
18
期数:
2022年3期
页码:
112-117
栏目:
职业安全卫生管理与技术
出版日期:
2022-03-31

文章信息/Info

Title:
Analysis on crack control effect of regenerated roof for slicing based on FLAC3D
文章编号:
1673-193X(2022)-03-0112-06
作者:
陈健鲁义于顺才丁仰卫李亮任英勇
(1.湖南科技大学 资源环境与安全工程学院,湖南 湘潭 411201;
2.湖南科技大学 南方煤矿瓦斯与顶板灾害预防控制安全生产重点实验室,湖南 湘潭 411201;
3.山东鲁泰控股集团有限公司 鹿洼煤矿,山东 济宁 272350;
4.吉利百矿集团百色双田矿业有限公司 州景煤矿,广西 百色 531500)
Author(s):
CHEN Jian LU Yi YU Shuncai DING Yangwei LI Liang REN Yingyong
(1.School of Resource,Environment and Safety Engineering,Hunan University of Science and Technology,Xiangtan Hunan 411201,China;
2.Work Safety Key Laboratory on Prevention and Control of Gas and Roof Disasters for Southern Coal Mines,Hunan University
关键词:
再生顶板纳米浆泡材料FLAC3D孔隙率
Keywords:
regenerated roof nano-particle foam slurry FLAC3D porosity
分类号:
TD313;X936
DOI:
10.11731/j.issn.1673-193x.2022.03.017
文献标志码:
A
摘要:
为了解决顶板裂隙漏风诱发的顶煤甚至采空区遗煤自燃问题,基于州景煤矿再生顶板现场实况,应用FLAC3D软件对比研究有无灌注纳米浆泡材料处理的再生顶板应力、位移以及孔隙率变化。结果表明:在不采取任何控制措施的情况下,巷道顶板位移大,极有可能会发生顶板垮塌事故且应力在两帮集中,两帮位移大,巷道断面收缩率极大;若使用纳米浆泡材料胶结再生的顶板,可以使巷道顶板产生不明显的位移,仅有稍微的下沉,虽然两帮仍有应力集中的区域,但两帮位移极小,巷道基本未发生收缩;依据顶板蠕变与孔隙率之间的关系进行理论推导发现,使用纳米浆泡材料注浆胶结的再生顶板其孔隙率变化幅度小,孔隙演化不显著,有利于提高顶板强度并解决再生顶板裂隙漏风问题,进而避免漏风导致顶煤甚至采空区遗煤自燃。
Abstract:
In order to solve the problem of the spontaneous combustion of roof coal and even residual coal in the goaf caused by the air leakage in the roof cracks,based on the on-site working conditions of the regenerated roof in Zhoujing coal mine,the FLAC3D software was used to compare the stress,displacement and porosity changes of the regenerated roof with or without the infusion of nano-particle foam slurry.The results showed that when without taking any control measures,the roof of roadway had large displacement,the roof collapse accident was very likely to occur,and the stress was concentrated on the two sides.The displacement of the two sides was large,and the shrinkage rate of roadway section was extremely large.If the regenerated roof was cemented by the nano-particle foam slurry,the displacement of the roof of roadway was not obvious with only slight sinking.Although there still existed the stress-concentrated areas on the two sides,the displacement of the two sides was very small,and the roadway basically did not shrink.According to the theoretical derivation of the relationship between the roof creep and porosity,it was found that the regenerated roof with the grouting cementation of nano-particle foam slurry had little change range of porosity,and the pore evolution was not significant,which is beneficial to improve the strength of roof and solve the problem of air leakage in the regenerated roof cracks,thus avoid the air leakage leading to spontaneous combustion of the roof coal or even the residual coal in the goaf.

参考文献/References:

[1]袁亮.我国煤炭资源高效回收及节能战略研究[J].中国矿业大学学报(社会科学版),2018,20(1):3-12.YUAN Liang.Research on my country’s coal resource efficient recovery and energy saving strategy[J].Journal of China University of Mining & Technology (Social Sciences),2018,20(1):3-12.
[2]刘畅,弓培林,王开,等.复采工作面过空巷顶板稳定性[J].煤炭学报,2015,40(2):314-322.LIU Chang,GONG Peilin,WANG Kai,et al.Roof stability of re-mining working face across goaf[J].Journal of China Coal Society,2015,40(2):314-322.
[3]张俊文,赵景礼,王志强.近距残煤综放复采顶煤损伤与冒放性控制[J].煤炭学报,2010,35(11):1854-1858.ZHANG Junwen,ZHAO Jingli,WANG Zhiqiang.Top coal damage and caving control in fully mechanized caving mining near residual coal[J].Journal of China Coal Society,2010,35(11):1854-1858.
[4]马文强,王同旭,马紫阳.复采采场再生顶板结构及支架载荷确定[J].岩土工程学报,2017,39(10):145-153.MA Wenqiang,WANG Tongxu,MA Ziyang.The reclaimed roof structure and support load determination of the reclaimed stope[J].Chinese Journal of Geotechnical Engineering,2017,39(10):145-153.
[5]马威,米楚明,王祥.西庞煤矿采空区遗煤复采煤层自燃火灾的防治[J].煤矿安全,2010,41(4):31-33.MA Wei,MI Chuming,WANG Xiang.Prevention and control of spontaneous combustion in the re-mining coal seam of the leftover coal in the goaf of Xipang Coal Mine[J].Safety in Coal Mines,2010,41(4):31-33.
[6]杨庆威.白皎煤矿余煤复采顶板控制及防灭火技术应用[D].西安:西安科技大学,2013.
[7]欧治顺,马中飞.冒落空洞煤炭自燃的浅析与防治[J].煤矿安全,1988,19(12):28-31.OU Zhishun,MA Zhongfei.Analysis and prevention of spontaneous combustion of coal in caving hole[J].Safety in Coal Mines,1988,19(12):28-31.
[8]鲁健,尚奇,郭萌,等.基于3DEC的块体尺寸及形状对再生顶板稳定性影响模拟研究[J].中国煤炭,2018,44(3):87-90,115.LU Jian,SHANG Qi,GUO Meng,et al.Simulation study on the influence of block size and shape on the stability of recycled roof based on 3DEC[J].China Coal,2018,44(3):87-90,115.
[9]余明高,滕飞,褚廷湘,等.浅埋煤层重复采动覆岩裂隙及漏风通道演化模拟研究[J].河南理工大学学报(自然科学版),2018,37(1):1-7.YU Minggao,TENG Fei,CHU Tingxiang,et al.Simulation study on the evolution of overburden cracks and air leakage channels in shallow coal seam repeated mining[J].Journal of Henan Polytechnic University (Natural Science),2018,37(1):1-7.
[10]宋学峰,马文强,王同旭,等.再生顶板中弱胶结岩梁破坏机理的数值模拟[J].煤矿安全,2017,48(10):182-185.SONG Xuefeng,MA Wenqiang,WANG Tongxu,et al.Numerical simulation of the failure mechanism of weak cemented rock beam in recycled roof[J].Safety in Coal Mines,2017,48(10):182-185.
[11]王平,冯涛,蒋运良,等.软弱再生顶板巷道围岩失稳机理及其控制原理与技术[J].煤炭学报,2019,44(10):13-25.WANG Ping,Feng Tao,Jiang Yunliang,et al.Instability mechanism and control principle and technology of surrounding rock in weak regenerated roof roadway[J].Journal of China Coal Society,2019,44(10):13-25.
[12]郝登云,崔千里,何杰,等.锚杆锚索支护巷道层状顶板变形特征及离层监测研究[J].煤炭学报,2017,42(S1):49-56.HAO Dengyun,CUI Qianli,HE Jie,et al.Research on deformation characteristics and separation monitoring of layered roof in roadway supported by bolts and cables[J].Journal of China Coal Society,2017,42(S1):49-56.
[13]杨胜强,尹文萱,于宝海,等.煤巷高冒区破碎煤体自然发火微循环理论分析[J].中国矿业大学学报,2008,37(5):590-594.YANG Shengqiang,YIN Wenxuan,YU Baohai,et al.Theoretical analysis of spontaneous combustion microcirculation of broken coal in high-collapse area of coal roadway[J].Journal of China University of Mining & Technology,2008,37(5):590-594.
[14]刘雷政.浅埋藏近距离煤层群开采上覆采空区煤自燃危险区域判定[D].徐州:中国矿业大学,2015.
[15]杨蓉,李相国,刘卓霖,等.磷铝酸盐水泥基灌浆材料流变性能及保水性能[J].硅酸盐通报,2017,36(6):2043-2048.YANG Rong,LI Xiangguo,LIU Zhuolin,et al.Rheological properties and water retention properties of phosphor aluminate cement-based grouting materials[J].Bulletin of The Chinese Ceramic Society,2017,36(6):2043-2048.
[16]杨帅,刘俊杰,李秀玲,等.煤矿用高分子灌浆材料[J].煤矿开采,2010,16(5):4-7.YANG Shuai,LIU Junjie,LI Xiuling,et al.Polymer grouting materials for coal mines[J].Coal Mining Technology,2010,16(5):4-7.
[17]ZHANG L,QIN B,SHI B,et al.The fire extinguishing performances of foamed gel in coal mine[J].Natural Hazards,2016,81(3):1957-1969.
[18]COLAIZZI G J.Prevention,control and/or extinguishment of coal seam fires using cellular grout-science direct[J].International Journal of Coal Geology,2004,59(1):75-81.
[19]秦波涛,王德明,陈建华,等.高性能防灭火三相泡沫的实验研究[J].中国矿业大学学报,2005,34 (1):11-15.QIN Botao,WANG Deming,CHEN Jianhua,et al.Experimental research on high-performance fire-fighting three-phase foam[J].Journal of China University of Mining & Technology,2005,34 (1):11-15.
[20]袁靖周.岩石蠕变应变率与孔隙率相关性规律探析[J].珠江水运,2016(19):34-35.YUAN Jingzhou.Analysis of the correlation between creep strain rate and porosity of rock[J].Pearl River Water Transport,2016(19):34-35.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期: 2021-05-27;网络首发日期: 2022-01-24
* 基金项目: 国家自然科学基金项目(52174180,51974119,51974120,51774135);湖湘青年英才项目(2020RC3047);湖南省自然科学基金重点项目(2020JJ4023);湖南省研究生科研创新项目(CX20210989)
作者简介: 陈健,硕士研究生,主要研究方向为矿井火灾防治与瓦斯治理。
更新日期/Last Update: 2022-04-18