|本期目录/Table of Contents|

[1]李俊逸,李长俊,贾文龙,等.含硫天然气井口笼套式节流阀硫沉积数值模拟研究*[J].中国安全生产科学技术,2022,18(3):61-67.[doi:10.11731/j.issn.1673-193x.2022.03.009]
 LI Junyi,LI Changjun,JIA Wenlong,et al.Numerical simulation study on sulfur deposition of cage sleeve throttle valve in sour natural gas wellhead[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(3):61-67.[doi:10.11731/j.issn.1673-193x.2022.03.009]
点击复制

含硫天然气井口笼套式节流阀硫沉积数值模拟研究*
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
18
期数:
2022年3期
页码:
61-67
栏目:
职业安全卫生管理与技术
出版日期:
2022-03-31

文章信息/Info

Title:
Numerical simulation study on sulfur deposition of cage sleeve throttle valve in sour natural gas wellhead
文章编号:
1673-193X(2022)-03-0061-07
作者:
李俊逸李长俊贾文龙张财功韩西成黄永恒
(1.西南石油大学 石油与天然气工程学院,四川 成都 610500;
2.汉正检测技术有限公司,四川 广汉 618000;
3.国家管网集团西气东输分公司,上海 200122)
Author(s):
LI Junyi LI Changjun JIA Wenlong ZHANG Caigong HAN Xicheng HUANG Yongheng
(1.Petroleum Engineering School,Southwest Petroleum University,Chengdu Sichuan 610500,China;
2.Hanzheng Testing Technology Co.,Ltd.,Guanghan Sichuan 618000,China;
3.PipeChina West East Gas Pipeline Company,Shanghai 200122,China)
关键词:
笼套式节流阀流场硫颗粒沉积率数值模拟
Keywords:
cage sleeve throttle value flow field sulfur particle deposition rate numerical simulation
分类号:
X937
DOI:
10.11731/j.issn.1673-193x.2022.03.009
文献标志码:
A
摘要:
为分析含硫天然气气田井口笼套式节流阀的硫沉积问题,基于雷诺应力模型、组分输运模型及离散相模型,建立硫沉积数值模拟模型,分析笼套式节流阀的硫沉积规律及影响因素。研究结果表明:硫沉积主要出现在正对来流的节流孔外侧下缘、阀套边缘以及阀芯内侧,其中节流孔外侧下缘的沉积最严重,对于该位置,随着气流进口速度的增大,硫沉积速率先增大后减小,当气流速度为5 m/s时达到最大值;同时,正对来流的节流孔外侧下缘的最大沉积率与阀门开度、节流孔孔径、阀芯内径成负相关,而与粒径成正相关,其中,随节流孔孔径与阀芯内径增大,最大沉积率近似以7.8×10-5,7.4×10-5 kg/(m2·mm)的平均速率下降。
Abstract:
In order to analyze the sulfur deposition problem of the cage sleeve throttle value at the wellhead of sour natural gas field,a numerical simulation model of sulfur deposition was established based on the Reynolds stress model,the component transport model and the discrete phase model,and the laws and influencing factors of sulfur deposition in the cage sleeve throttle value were analyzed.The results showed that the sulfur deposition mainly appeared at the lower edge of the outer side of orifice facing the incoming flow,the edge of sleeve and the inner side of valve core,and the deposition at the lower edge of the outer side of orifice was the most serious.For this position,with the increase of airflow inlet velocity,the sulfur deposition rate increased first and then decreased,which reached the maximum value when the airflow velocity was 5 m/s.At the same time,the maximum deposition rate at the lower edge of the outer side of orifice was negatively related to the valve opening,orifice diameter and inner diameter of valve core,while it was positively related to the particle size.As the orifice diameter and the inner diameter of valve core increased,the maximum deposition rate approximately decreased at an average rate of 7.8×10-5 kg/(m2·mm) and 7.4×10-5 kg/(m2·mm).

参考文献/References:

[1]李宁,何洋,任斌,等.普光气田地面集输系统硫沉积原因分析及对策[J].天然气勘探与开发,2012,35(3):69-72.LI Ning,HE Yang,REN Bin,et al.Cause analysis and countermeasures of sulfur deposition in the surface gathering and transportation system of Puguang gas field [J].Natural Gas Exploration and Development,2012,35(3):69-72.
[2]李时杰,杨发平,刘方俭.普光气田地面集输系统硫沉积问题探讨[J].天然气工业,2011,31(3):75-79.LI Shijie,YANG Faping,LIU Fangjian.A discussion on the sulphur deposition in the ground surface gathering and transmission system of the Puguang gas field[J].Natural Gas Industry,2011,31(3):75-79.
[3]黄仕林,庄园,曹纯元.元坝高含硫气田笼套式节流阀损毁原因及改进措施[J].油气田地面工程,2016,35(12):60-63.HUANG Shilin,ZHUANG Yuan,CAO Chunyuan.Reasons for damage of two-step corbulatype throttle valve and improvement measures in yuanba highsulfur gas field [J].Oil-Gas Field Surface Engineering,2016,35(12):60-63.
[4]陈磊,李长俊,陈尚周.球阀处硫颗粒运移沉降规律数值模拟研究[J].中国安全生产科学技术,2016,12(1):90-95.CHEN Lei,LI Changjun,CHEN Shangzhou.Numerical simulation on laws of movement and settlement for sulfur particles in ball valve [J].Journal of Safety Science and Technology,2016,12(1):90-95.
[5]陈磊,李长俊,季楚凌.水平弯管内硫沉积数值模拟研究[J].中国安全生产科学技术,2015,11(2):28-35.CHEN Lei,LI Changjun,JI Chuling.Study on numerical simulation of sulfur deposition in horizontal bend [J].Journal of Safety Science and Technology,2015,11(2):28-35.
[6]李德选,龚金海,付玉亮.高含硫气田集输系统硫沉积的综合治理[J].油气田地面工程,2013,32(10):33-34.LI Dexuan,GONG Jinhai,FU Yuliang.Comprehensive management of sulfur deposition in the gathering and transportation system of high-sulfur gas fields [J].Oil-Gas Field Surface Engineering,2013,32(10):33-34.
[7]叶青松.高含硫气田地面集输系统堵塞原因分析及对策[D].成都:西南石油大学,2012.
[8]王勇.高含硫天然气集输系统硫沉积研究进展[J].天然气与石油,2014,32(4):12-17.WANG Yong.Research progress of sulfur deposition in high-sulfur natural gas gathering and transportation systems [J].Natural Gas and Oil,2014,32(4):12-17.
[9]戴颖.天然气管道黑粉沉积机制研究[D].北京:中国石油大学(北京),2018.
[10]符运豪,李悦钦,郭龙龙,等.基于CFD笼套式节流阀阀芯的冲蚀磨损研究[J].热加工工艺,2016,45(20):65-68.FU Yunhao,LI Yueqin,GUO Longlong,et al.Research on erosion and abrasion of spool of cage sleeve throttle based on CFD [J].Thermal processing technology,2016,45(20):65-68.
[11]刘萍萍,李悦钦,王亚丽,等.笼套式节流阀冲蚀磨损计算研究[J].石油机械,2011,39(4):53-56.LIU Pingping,LI Yueqin,WANG Yali,et al.Study on erosion and wear calculation of cage type throttle valve [J].Petroleum Machinery,2011,39(4):53-56.
[12]魏鑫.笼套式节流阀阀芯失效机理分析与改进研究[D].成都:西南石油大学,2015.
[13]刘洪涛.气固两相流中微细颗粒沉积与扩散特性的数值研究[D].重庆:重庆大学,2010.
[14]HU B,ZHU H,XU F,et al.Analysis of gas hydrate formation in Subsea external sleeve choke,November 13-19,2015 [C]//Houston:ASME,2015.
[15]PACK D J.Elemental sulphur formation in natural gas transmission pipelines [D].Perth:The degree of doctor of the university of western Australia,2005.
[16]石油工程建设专业标准化委员会.高含硫化氢气田地面集输系统设计规范:第4部分 集输工艺:SY/T 0612—2014[S].北京:石油工业出版社,2014:11.
[17]GAO Z X,YANG Y,WU J,et al.The flow and cavitation characteristics of cage type control valves [J].Engineering Applications of Computational Fluid Mechanics,2021,15(1):951-963.
[18]陈小榆.工程流体力学[M].北京:石油工业出版社,2015:65-71.

相似文献/References:

[1]陈磊,李长俊,陈尚周.球阀处硫颗粒运移沉降规律数值模拟研究[J].中国安全生产科学技术,2016,12(1):90.[doi:10.11731/j.issn.1673-193x.2016.01.017]
 CHEN Lei,LI Changjun,CHEN Shangzhou.Numerical simulation on laws of movement and settlement for sulfur particles in ball valve[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(3):90.[doi:10.11731/j.issn.1673-193x.2016.01.017]
[2]朱祝龙,赵亚平,宫宇,等.抽出式通风机数量对地铁区间隧道通风排烟能力影响的实验研究*[J].中国安全生产科学技术,2021,17(6):130.[doi:10.11731/j.issn.1673-193x.2021.06.021]
 ZHU Zhulong,ZHAO Yaping,GONG Yu,et al.Experimental study on influence of number of extraction fans on ventilation and smoke exhaust capacity of metro interval tunnel[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2021,17(3):130.[doi:10.11731/j.issn.1673-193x.2021.06.021]
[3]黄瀚仪,刘剑,王禹,等.风筒位置对掘进巷道流场影响的PIV实验*[J].中国安全生产科学技术,2022,18(9):97.[doi:10.11731/j.issn.1673-193x.2022.09.014]
 HUANG Hanyi,LIU Jian,WANG Yu,et al.PIV experiments on influence of air duct position on flow field in excavation roadway[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(3):97.[doi:10.11731/j.issn.1673-193x.2022.09.014]

备注/Memo

备注/Memo:
收稿日期: 2021-06-28
* 基金项目: 国家自然科学基金项目(52074238,51974269);四川省科技计划项目(2020YFSY0053,2020YFH0141)
作者简介: 李俊逸,硕士研究生,主要研究方向为油气储运流动与安全。
更新日期/Last Update: 2022-04-18