|本期目录/Table of Contents|

[1]于保才,邵良杉.矿井主风机不停风倒机系统最优控制研究*[J].中国安全生产科学技术,2022,18(2):119-124.[doi:10.11731/j.issn.1673-193x.2022.02.018]
 YU Baocai,SHAO Liangshan.Study on optimal control of non-stop switchover system of mine main fan[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(2):119-124.[doi:10.11731/j.issn.1673-193x.2022.02.018]
点击复制

矿井主风机不停风倒机系统最优控制研究*
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
18
期数:
2022年2期
页码:
119-124
栏目:
职业安全卫生管理与技术
出版日期:
2022-02-28

文章信息/Info

Title:
Study on optimal control of non-stop switchover system of mine main fan
文章编号:
1673-193X(2022)-02-0119-06
作者:
于保才邵良杉
(辽宁工程技术大学 系统工程研究所,辽宁 葫芦岛 125105)
Author(s):
YU Baocai SHAO Liangshan
(Institute of Systems Engineering,Liaoning Technical University,Huludao Liaoning 125105,China)
关键词:
稳风倒机动态数学模型改进粒子群算法模糊自适应PIDMatlab仿真
Keywords:
steady wind switchover dynamic mathematical model improved particle swarm algorithm fuzzy adaptive PID Matlab simulation
分类号:
X936TD441
DOI:
10.11731/j.issn.1673-193x.2022.02.018
文献标志码:
A
摘要:
为解决矿井停机切换主要通风机过程中引起的井下风量波动很大,易造成瓦斯积聚等引发的安全问题,提出1种基于智能控制的主通风机稳风切换系统。建立动态风机倒机数学模型,提出基于改进粒子群算法优化的模糊自适应PID的控制方法,并应用MATLAB进行仿真实验,结果表明:控制方法控制效果明显,在系统运行的120 s内,井下风量波动始终在0.6%以内,并且2台主要通风机始终工作在稳定区间,从而证明该系统的高效性、稳定性和安全性。
Abstract:
In order to solve the safety problem caused by the large fluctuation of underground air volume and the accumulation of gas in the shutdown and switchover processes of the mine main fans,a kind of steady wind switchover system of main fans based on the intelligent control was proposed.A mathematical model of dynamic fans switchover was established for the first time,then a control method of the fuzzy adaptive PID based on the improved particle swarm algorithm optimization was put forward,and the simulation experiment was carried out with MATLAB.The results showed that the control effect of the proposed control method was obvious.Within 120 s of system operating time,the underground air volume fluctuation was always under 0.6%,and the two main fans always worked in a stable range,so the efficiency,stability and safety of the system were proved.

参考文献/References:

[1]伍小沙,田世祥,马瑞帅,等.煤体初始瓦斯涌出规律预测煤巷突出危险性研究[J].中国安全生产科学技术,2021,17(4):116-121.WU Xiaosha,TIAN Shixiang,MA Ruishuai,et al.Study on prediction of outburst risk of coal roadway by initial gas emission law of coal body[J].Journal of Safety Science and Technology,2021,17(4):116-121.
[2]吴新忠.煤矿主通风机通风失稳控制的研究与应用[D].徐州:中国矿业大学,2010.
[3]董素玲.基于模糊控制的煤矿主井通风机不停风倒机自动控制系统设计[J].工矿自动化,2015,41(9):39-43.DONG Suling.Design of automatic switchover control system without blowing-out of mine main ventilator based on fuzzy control[J].Industry and Mine Automation,2015,41(9):39-43.
[4]WANG Q J,MA X P,YANG C Y,et al.Modeling and control of mine main fan switchover system[J].ISA Transactions,2019,85:189-199.
[5]WU X,MA X,REN Z.Study on coal mine main fan automatic switchover aiming at ventilation unceasing and its numerical simulation[C]//2010 2nd International Asia Conference on Informatics in Control,Automation and Robotics (CAR 2010).IEEE,2010,2:227-230.
[6]余德杰,桑聪,刘彦青,等.煤矿主要通风机风量测试误差对比分析[J].煤炭科学技术,2018,46(12):164-168.YU Dejie,SANG Cong,LIU Yanqing,et al.Comparison analysis on air flow testing error of mine main ventilator[J].Coal Science and Technology,2018,46(12):164-168.
[7]尹昌胜,刘剑,邓立军.正反相切抛物线方法拟合通风机特性曲线[J].辽宁工程技术大学学报(自然科学版),2015,34(1):77-81.YIN Changsheng,LIU Jian,DENG Lijun.Characteristic curve of fan fitted with two positive and negative tangent parabolic curve method[J].Journal of Liaoning Technical University(Natural Science),2015,34(1):77-81.
[8]郑城,张洁,吕佑龙,等.基于改进粒子群算法的晶圆良率优化方法[J/OL].计算机集成制造系统:1-17.[2021-03-29]( 2021-05-18).http://kns.cnki.net/kcms/detail/11.5946.TP.20210328.1919.002.html.ZHENG Cheng,ZHANG Jie,LYU Youlong,et al.Wafer yield improvement based on enhanced particle swarm optimization[J/OL].Computer Integrated Manufacturing Systems & Practice,1-17.[2021-03-29]( 2021-05-18).http://kns.cnki.net/kcms/detail/11.5946.TP.20210328.1919.002.html.
[9]徐奇伟,龙胜,程智浩,等,基于改进粒子群算法的微直线电机动子位置辨识策略研究[J].电机与控制学报,2021,25(8):56-66.XU Qiwei,LONG Sheng,CHENG Zhihao,et al.Research on the mover position detection strategy of micro linear motor based on improved particle swarm algorithm [J].Electric Machines and Control,2021,25(8):56-66.
[10]葛恒清.基于PSO算法的煤矿通风系统优化与调控[D].徐州:中国矿业大学,2020.
[11]任子晖,王翠,倪婷婷,等.基于神经网络不停风倒机风量变化的研究[J].煤炭技术,2016,35(11):229-231.REN Zihui,WANG Cui,NI Tingting,et al.Research on air volume of reversing without stopping ventilation based on neural network [J].Coal Technology,2016,35(11):229-231.
[12]GE H Q,MA X P,WU X Z,et al.Fuzzy PID control of mine main fan switchover aiming at invariant ventilation[C]//2011 International Conference on Intelligence Science and Information Engineering.IEEE,2011:325-328.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期: 2021-05-18
* 基金项目: 国家自然科学基金项目(71771111)
作者简介: 于保才,博士研究生,主要研究方向为信息系统与智能决策,通风系统优化、评价。
通信作者: 邵良杉,博士,教授,主要研究方向为矿业系统工程、大数据等。
更新日期/Last Update: 2022-03-18