|本期目录/Table of Contents|

[1]程明,李忆轩.终端区飞行冲突事件情景演变网络构建研究 *[J].中国安全生产科学技术,2022,18(2):50-55.[doi:10.11731/j.issn.1673-193x.2022.02.007]
 CHENG Ming,LI Yixuan.Research on scenario evolution network construction of flight conflict incident in terminal area[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(2):50-55.[doi:10.11731/j.issn.1673-193x.2022.02.007]
点击复制

终端区飞行冲突事件情景演变网络构建研究 *
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
18
期数:
2022年2期
页码:
50-55
栏目:
学术论著
出版日期:
2022-02-28

文章信息/Info

Title:
Research on scenario evolution network construction of flight conflict incident in terminal area
文章编号:
1673-193X(2022)-02-0050-06
作者:
程明李忆轩
(中国民航大学 安全科学与工程学院,天津 300300)
Author(s):
CHENG Ming LI Yixuan
(College of Safety Science and Engineering,Civil Aviation University of China,Tianjin 300300,China)
关键词:
飞行冲突情景风险演化模型复杂网络
Keywords:
flight conflict scenario risk evolution model complex network
分类号:
X949
DOI:
10.11731/j.issn.1673-193x.2022.02.007
文献标志码:
A
摘要:
为了控制终端区飞行冲突的风险,基于复杂网络,将飞行冲突的情景演变过程转化为复杂网络进行分析计算。分析侧向交叉跑道机场的主要安全风险,构建包含527个节点与2 644条边的终端区飞行冲突情景演化复杂网络模型;采用无权有向网络中的节点度、度中心性、介数中心性、聚类系数等进行风险分析;采用Dijkstra算法,确定影响飞行冲突的关键节点。研究结果表明:网络平均度为5.017,平均路径长度为3.273和网络直径为9,表现出明显的小世界网络特征;网络的聚类系数为0.331,网络聚集程度偏低而演化性较强;飞行冲突控制的关键节点主要为“监视雷达”、“潜在火灾或烟雾”、“航迹不稳定”和“紧急定位发射器信号”等设备故障有关节点;“中止进近”、“避让”、“冲突”、“复飞”和“重新进近”等为导致飞行冲突关键节点,最短路径“起飞-重新进近”的发生概率最大为3.39×10-7。利用民航安全信息实现飞行冲突情景演化过程的可视化,可为此类事件的预防和解脱提供理论方法,对保障民航运行安全具有现实意义。
Abstract:
To control the risk of flight conflict in the terminal area,based on the complex network,the scenario evolution process of flight conflict was transformed into the complex network for analysis and calculation.Firstly,the main safety risk of the lateral cross runway airport was analyzed,and a complex network model of scenario evolution for the flight conflict in the terminal area was constructed,which included 527 nodes and 2644 edges.Secondly,the risk analysis was carried out by using the nodes degree,the degree centrality,the betweenness centrality and the clustering coefficients in the unweighted and directed network.Finally,the key nodes influencing the flight conflict were determined by using the Dijkstra algorithm.The results showed that the network average degree was 5.017,the average path length was 3.273,and the network diameter was 9,which presented the obvious characteristics of small-world network.The clustering coefficient of network was 0.331,the network aggregation degree was relatively low,while the evolvability was stronger.The key nodes of flight conflict control were mainly those related to equipment failure,including “surveillance radar”,“potential fire or smoke”,“track instability” and “emergency positioning transmitter signal”.The key nodes leading to the flight conflict were the “abort approach”,“avoid”,“conflict”,“go-around” and “reapproach”,and the maximum occurrence probability of the shortest paths named “take off-reapproach” was 3.391 0-7.It showed that using the civil aviation safety information to realize the visualization of the scenario evolution process of flight conflict can provide a theoretical method for the prevention and relief of such incidents,and it has practical significance for guarding the safety operation of civil aviation.

参考文献/References:

[1]高浩然,何昕,詹建明.我国多跑道机场运行发展研究[J].交通企业管理,2013,28(6):60-61.GAO Haoran,HE Xin,ZHAN Jianming.Research on the development of multi runway airport operation in China[J].Transportation Enterprise Management,2013,28(6):60-61.
[2]KUNZI F,HANSMAN R J.Mid-air collision risk and areas of high benefit for traffic alerting - 11th AIAA aviation technology integration and operations (ATIO)conference (AIAA)[J].American Institute of Aeronautics & Astronautics,2011,6894(6):1-8.
[3]MOORE J G.AVIATIONSAFETY:FAA near mid-air collision reports[J].1987,14(2):87-691.
[4]NORDLUND P J,GUSTAFSSON F.Probabilisticnoncooperative near mid-air collision avoidance[J].IEEE TransactionsOn Aerospace & Electronic Systems,2011,47(2):1265-1276.
[5]MORSE B.IAF to FAF and beginning descent on the ILS-agood place to.have anear mid-air collision (NMAC)![J].Flying Safety,2003,59(10):10-11.
[6]PETAR Obradovic',SLOBODAN Obrenovic'.Mid-air collision risk analysis in terminal airspace[J].2015,8(73):141-149
[7]NACE,MONTE.Takeaways from acostly mid-air collision[J].Mobility Forum the Journal of the Air Mobility Commands Magazine,2015,24(2):34-35.
[8]马廷举,张文斌,陈雷.军民航共用进近区域飞行冲突的防范[J].中国民用航空,2019(6):30-31.MA Tingju,ZHANG Wenbin,CHEN Lei.Prevention of flight conflicts in military and civil aviation common approach areas[J].The Official Publication of CAAC,2019(6):30-31.
[9]李清华.复飞在机场目视进近中的重要性[J].中国民用航空,2013(1):37-38..LI Qinghua.The importance of going around in airport visual approach[J].The Official Publication of CAAC,2013(1):37-38.
[10]代兰亭.机场机动区构型复杂度对跑道侵入的影响研究[D].广汉:中国民用航空飞行学院,2015.
[11]王永明.完善与发展重大突发事件情景构建技术方法的核心问题[J].中国安全生产科学技术,2019,15(2):5-9.WANG Yongming.Core issues of perfecting and developing technical methods for scenario construction of majoremergencies[J].Journal of Safety Science and Technology,2019,15(2):5-9.
[12]郄子君,荣莉莉.面向灾害情景推演的区域模型构建方法研究[J].管理评论,2020,32(10):276-292.QIE Zijun,RONG Lili.Aconstruction method of hazard-affected region for disaster scenario evolution [J].Nankai Business Review,2020,32(10):276-292.
[13]程明,崔鹏征,梁文娟,等.航空器飞行事故多层次情景空间描述模型[J].消防科学与技术,2020,39(3):420-424.CHENG Ming,CUI Pengzheng,LIANG Wenjuan,et al.Multi level scenario space description model of aircraft flight accident[J].Fire Science and Technology,2020,39(3):420-424.
[14]梁文娟,程明.航空器飞行事故的“情景-任务-绩效”应急模型及案例研究[J].安全与环境工程,2017,24(1):146-151.LIANG Wenjuan,CHENG Ming,“Scenario-Mission-Performance”emergency model and case study of aircraft flight accidents[J].Safety and Environmental Engineering,2017,24(1):146-151.
[15]饶文利,罗年学.台风风暴潮情景构建与时空推演[J].地球信息科学学报,2020,22(2):187-197.RAO Wenli,LUO Nianxue.Scenarios construction and spatial-temporal deduction of typhoon storm surge[J].Journal of Geo-information Science,2020,22(2):187-197
[16]王海东,陈凯,安广海,等.LNG船舶港口泄漏事故情景构建及危害程度分析[J].中国安全生产科学技术,2019,15(5):173-178.WANG Haidong,CHEN Kai,AN Guanghai,et al.Analysis on hazard degree of leakage accident of LNG ship in port based on scenario construction[J].Journal of Safety Science and Technology,2019,15(5):173-178.
[17]王起全,刘志刚,杨鑫刚,等.化工园区重大危险源风险情景构建分析[J].中国安全科学学报,2020,30(8):63-69.WANG Qiquan,LIU Zhigang,YANG Xingang,et al.Scenario construction analysis of major hazard sources in chemical industry parks[J].China Safety Science Journal,2020,30(8):63-69.
[18]钱学森,于景元,戴汝为.一个科学新领域——开放的复杂巨系统及其方法论[J].自然杂志,1990(1):3-10,64.QIAN Xuesen,YU Jingyuan,DAI Ruwei.A new field of Science:open complex giant system and its methodology[J].Chinese Journal of Nature,1990(1):3-10,64.
[19]徐俊明.图论及其应用[M].合肥:中国科学技术大学出版社,2004.
[20]中国民用航空局.2020年民航行业发展统计公报[R].北京:中国民用航空局,2021:6.
[21]孟祥坤,陈国明,朱红卫.海底管道泄漏风险演化复杂网络分析[J].中国安全生产科学技术,2017,13(4):26-31.MENG Xiangkun,CHEN Guoming,ZHU Hongwei.Complex network analysis on risk evolution of submarine pipeline leakage[J].Journal of Safety Science and Technology,2017,13(4):26-31.
[22]中国民用航空局.民航空中交通管理安全评估管理办法:AP-83-TM-2011-01[S].北京:中国民用航空局,2011:5.

相似文献/References:

[1]盛勇,孙庆云,王永明.突发事件情景演化及关键要素提取方法[J].中国安全生产科学技术,2015,11(1):17.[doi:10.11731/j.issn.1673-193x.2015.01.003]
 SHENG Yong,SUN Qing-yun,WANG Yong-ming.Emergency scenario evolution and extraction method of key elements[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2015,11(2):17.[doi:10.11731/j.issn.1673-193x.2015.01.003]
[2]秦挺鑫,高玉坤.电网应急演练方案编制规范化过程及评估方法研究[J].中国安全生产科学技术,2016,12(9):171.[doi:10.11731/j.issn.1673-193x.2016.09.030]
 QIN Tingxin,GAO Yukun.Study on plan programming standardization process and evaluation method of power grid emergency exercise[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(2):171.[doi:10.11731/j.issn.1673-193x.2016.09.030]

备注/Memo

备注/Memo:
收稿日期: 2021-05-10
* 基金项目: 中国民航局安全能力建设项目(ASSA202012);中央高校基本科研业务费专项(3122018F003)
作者简介: 程明,硕士,副研究员,主要研究方向为民航安全与运行。
更新日期/Last Update: 2022-03-18