|本期目录/Table of Contents|

[1]武佳佳,马东辉,王威.基于模糊相似优先比的供水管网渗漏同步诊断*[J].中国安全生产科学技术,2021,17(10):186-192.[doi:10.11731/j.issn.1673-193x.2021.10.028]
 WU Jiajia,MA Donghui,WANG Wei.Synchronous diagnosis on leakage of water supply pipeline network based on fuzzy similarity priority ratio[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2021,17(10):186-192.[doi:10.11731/j.issn.1673-193x.2021.10.028]
点击复制

基于模糊相似优先比的供水管网渗漏同步诊断*
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
17
期数:
2021年10期
页码:
186-192
栏目:
职业安全卫生管理与技术
出版日期:
2021-10-31

文章信息/Info

Title:
Synchronous diagnosis on leakage of water supply pipeline network based on fuzzy similarity priority ratio
文章编号:
1673-193X(2021)-10-0186-07
作者:
武佳佳马东辉王威
(1.北京工业大学 城市建设学部,北京100124;
2.北京工业大学 抗震减灾研究所,北京 100124)
Author(s):
WU Jiajia MA Donghui WANG Wei
(1.Faculty of Architecture,Civil And Transportation Engineering,Beijing University of Technology,Beijing 100124,China;
2.Institute of Earthquake Resistance and Disaster Reduction,Beijing University of Technology,Beijing 100124,China)
关键词:
渗漏同步诊断模糊相似优先比压力驱动水力分析扩散器监测点布置
Keywords:
synchronous diagnosis of leakage fuzzy similarity priority ratio pressure-driven hydraulic analysis diffuser sensor placement
分类号:
X913.4
DOI:
10.11731/j.issn.1673-193x.2021.10.028
文献标志码:
A
摘要:
为加强城市供水管网渗漏诊断能力,采用基于模糊相似优先比的漏损判别方法实现供水管网漏损定位及漏损程度的同步诊断。通过MATLAB软件调用最新版EPANET V2.2建立供水管网模型,在管段中间加入扩散器模拟单次渗漏事件,通过更改扩散器系数实现渗漏量的控制;基于压力驱动水力分析得到各节点压力变化,遍历模拟各管段漏损后,通过建立节点压力灵敏度矩阵,采用K均值聚类法进行监测点布置;在此基础上,在易渗漏管段模拟产生不同渗漏级别的渗漏事件,以监测点压力变化值构建源范例库,在熵权法的基础上,采用模糊相似优先比方法同步诊断渗漏位置及渗漏程度。以某一实际管网为例,模拟产生50例历史渗漏事件,采用模糊相似优先比同步诊断新渗漏事件的渗漏位置及渗漏程度,并对比3种权重方法。结果表明:模糊相似优先比法可有效地实现渗漏定位与渗漏程度的同步诊断。
Abstract:
In order to strengthen the leakage diagnosis ability of urban water supply pipeline network,a leakage identification method based on the fuzzy similarity priority ratio method was adopted to realize the synchronous diagnosis of the leakage location and the leakage degree of the water supply pipeline network.The MATLAB software was used to call the latest version EPANET V2.2 for establishing the model of water supply pipeline network,and the diffuser was added in the middle of pipeline section to simulate the single leakage event,and the control of leakage amount was realized through changing the coefficient of diffuser.The pressure changes of each node were obtained on the basis of pressure-driven hydraulic analysis,and after the ergodic simulating on the leakage of each pipeline section,the monitoring points arrangement was conducted by using the K-means clustering method through establishing the sensitivity matrix of node pressure.On this basis,the leakage events with different leakage levels were generated by simulation in the leakage prone pipeline section,and the source case base was established with the pressure change values of monitoring points.On the basis of the entropy weight method,the fuzzy similarity priority ratio method was used to diagnose the leakage location and leakage degree synchronously.Taking a certain actual pipeline network as an example,50 historical leak events were generated by simulation,then the fuzzy similarity priority ratio method was used to synchronously diagnose the leakage location and leakage degree of new leakage event,and three weighting methods were compared.The results showed that the fuzzy similarity priority ratio method could effectively realize the synchronous diagnosis of the leakage location and leakage degree.

参考文献/References:

[1]刘朝峰,兰玥,张晓博,等.供水管网震后流量监测点的动态分级优化布局研究[J].中国安全生产科学技术,2018,14(1):12-17. LIU Chaofeng,LAN Yue,ZHANG Xiaobo,et al.Study on dynamic classification for layout optimization of post-earthquake flow monitoring points in water supply network [J].Journal of Safety Science and Technology,2018,14(1):12-17.
[2]MISIUNAS D,LAMBERT M,SIMPSON A,et al.Burst detection and location in water distribution networks [J].Efficient Use and Management of Urban Water Supply,2005,5(3-4):71-80.
[3]PALAU C V,ARREGUI F J,CARLOS M.Burst detection in water networks using principal component analysis [J].Journal of Water Resources Planning and Management,2012,138(1):47-54.
[4]曹欣欣.基于水力瞬变的复杂供水管网漏水故障诊断软计算研究[D].保定:河北农业大学,2013.
[5]MOUNCE S R,BOXALL J B,MACHELL J.Development and verification of an online artificial intelligence system for detection of bursts and other abnormal flows [J].Journal of Water Resources Planning and Management,2010,136(3):309-318.
[6]陈海,赵梦珂,于冰,等.基于人工神经网络的供水管网渗漏定位方法[J].水资源研究,2018,7(2):144-153. CHEN Hai,ZHAO Mengke,YU Bing,et al.Pipe burst localization in water distribution systems based on artificial neural network [J].Journal of Water Resources Research,2018,7(2):144-153.
[7]ZHANG Q Z,WU Z Y,ZHAO M,et al.Leakage zone identification in large-scale water distribution systems using multiclass support vector machines [J].Journal of Water Resources Planning and Management,2016,142(11):04016042.
[8]程伟平,赵丹丹,许刚,等.供水管网爆管水力学模型与爆管定位[J].浙江大学学报(工学版),2013,47(6):1057-1062. CHENG Weiping,ZHAO Dandan,XU Gang,et al.Pipe burst hydraulic model of water distribution system and pipe burst location [J].Journal of Zhejiang University(Engineering Science),2013,47(6):1057-1062.
[9]程伟平,陈梅君,许刚,等.基于SCADA数据的长距离输水管爆管定位研究[J].中国给水排水,2019,35(13):57-61. CHENG Weiping,CHEN Meijun,XU Gang,et al.Location of burst point in long distance water pipe based on scada monitoring data [J].China Water & Wastewater,2019,35(13):57-61.
[10]王顺洪.用模糊相似优先比关系预测工程项目投标报价[J].西南交通大学学报,2001,36(1):96-99. WANG Shunhong.Forecasting the bid of engineering projects with fuzzy similar priority comparison [J].Journal of Southwest Jiaotong University,2001,36(1):96-99.
[11]刘沐宇,朱瑞赓.基于模糊相似优先的边坡稳定性评价范例推理方法[J].岩石力学与工程学报,2002,21(8):1188-1193. LIU Muyu,ZHU Ruigeng.Case-based reasoning approach to slope stability evaluation based on fuzzy analogy preferred ratio [J].Chinese Journal of Rock Mechanics and Engineering,2002,21(8):1188-1193.
[12]张晓磊,杨西龙,展丽潇.基于模糊相似推理的应急物资需求预测模型研究[J].物流技术,2012,31(9):229-231. ZHANG Xiaolei,YANG Xilong,ZHAN Lixiao.Study on fuzzy similarity inference based model for emergency material demand forecasting [J].Logistics Technology,2012,31(9):229-231.
[13]曾小康,冯阳,赖文庆,等.基于AHP-熵权法的城市燃气管道风险评价[J].中国安全生产科学技术,2021,17(5):130-135. ZENG Xiaokang,FENG Yang,LAI Wenqing,et al.Application of method of entropy proportion to urban eatthquake disaster risk index [J].Journal of Safety Science and Technology,2021,17(5):130-135.
[14]Disclaimer EPANET 2.2 documentation.EPANET 2.2 online manual[EB/OL].(2020-07-23) [2021-10-18].https://epanet22.readthedocs.io/en/latest/.
[15]韩朝,马东辉,侯本伟,等.基于压力驱动节点配水量模型的供水管网震后水力分析[J].中国科学:技术科学,2019,49(3):351-362. HAN Zhao,MA Donghui,HOU Benwei,et al.Post-earthquake hydraulic analyses of urban water supply network based on pressure drive demand model [J].Scientia Sinica(Technologica),2019,49(3):351-362.
[16]吴礼斌,李伯年.MATLAB数据分析方法.第2版[M].北京:机械工业出版社,2017.
[17]林雨阳.城市供水管网实时监控系统的设计与监测点的优化布置[D].广州:华南理工大学,2013.
[18]王训俭,王增义.论给水管网压力监测点的选择[J].中国给水排水,1989,5(3):9-12. WANG Xunjian,WANG Zengyi.Selecting pressure monitor nodes of a water supply network system [J].China Water & Wastewater,1989,5(3):9-12.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期: 2021-05-08
* 基金项目: 国家自然科学基金项目(51678017)
作者简介: 武佳佳,博士研究生,主要研究方向为供水管网抗震防灾。
通信作者: 马东辉,博士,研究员,主要研究方向为城市生命线系统抗灾分析。
更新日期/Last Update: 2021-11-03