|本期目录/Table of Contents|

[1]蒲松,张睿,方勇,等.硬岩竖井爆破损伤区探测及衬砌荷载*[J].中国安全生产科学技术,2021,17(10):85-91.[doi:10.11731/j.issn.1673-193x.2021.10.013]
 PU Song,ZHANG Rui,FANG Yong,et al.Detection on blasting damage zone of hard rock shaft and lining load[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2021,17(10):85-91.[doi:10.11731/j.issn.1673-193x.2021.10.013]
点击复制

硬岩竖井爆破损伤区探测及衬砌荷载*
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
17
期数:
2021年10期
页码:
85-91
栏目:
职业安全卫生管理与技术
出版日期:
2021-10-31

文章信息/Info

Title:
Detection on blasting damage zone of hard rock shaft and lining load
文章编号:
1673-193X(2021)-10-0085-07
作者:
蒲松张睿方勇余涛方晓峰田青峰
(1.西南交通大学,四川 成都 610031;
2.四川川交路桥有限责任公司,四川 广汉 618300;
3.天津大学,天津 300352)
Author(s):
PU Song ZHANG Rui FANG Yong YU Tao FANG Xiaofeng TIAN Qingfeng
(1.Southwest Jiaotong University,Chengdu Sichuan 610031,China;
2.Sichuan Chuanjiao Cross Road & Bridge Co.,Ltd.,Guanghan Sichuan 618300,China;
3.Tianjin University,Tianjing 300352,China)
关键词:
硬岩竖井爆破损伤区衬砌荷载数值模拟
Keywords:
hard rock shaft blasting damage zone lining load numerical simulation
分类号:
X947;U45
DOI:
10.11731/j.issn.1673-193x.2021.10.013
文献标志码:
A
摘要:
为研究硬岩竖井受爆破开挖扰动的影响,依托米仓山公路隧道竖井工程,采用RSM-RCT(B)测试系统探测竖井爆破损伤区范围为1.1~1.4 m,并利用残余地质强度指标标定损伤区力学参数,将其纳入收敛约束法和数值分析中,以评估损伤区对竖井围岩及衬砌荷载的影响。研究结果表明,在硬岩竖井中开挖爆破是造成岩体损伤区的关键因素,地应力方向和大小对硬岩损伤区分布基本无影响。分析结果表明,爆破损伤区导致围岩变形增大,从而使得衬砌荷载增加,最大剪应力出现在损伤区与未破坏岩体之间的交界处,大小为16 MPa,同时靠近该位置的衬砌荷载也会变大,较深竖井可采用分区段支护,降低投资成本。研究结果可为硬岩竖井开挖荷载计算及设计优化提供一定参考。
Abstract:
In order to study the influence of blasting excavation disturbance on the hard rock shaft,relying on the shaft engineering of Micangshan highway tunnel,the RSM-RCT (B) test system was used to detect the blasting damage zone of shaft,and the result ranged from 1.1 m to 1.4 m.The residual geological strength index (GSI) was used to calibrate the mechanical parameters of the damage zone,and incorporated into the convergence constraint method and numerical analysis to evaluate the influence of the damage zone on the surrounding rock and lining load of shaft.The results showed that the key factor which caused the rock mass damage zone was the blasting excavation in the hard rock shaft,while the direction and magnitude of crustal stress had little influence on the distribution of hard rock damage zone.The blasting damage zone led to the increasing deformation of surrounding rock,thus the increasing lining load.The maximum shear stress was 16 MPa,which occurred at the junction between the damage zone and the undamaged rock mass.At the same time,the lining load near this position would also become larger.Consequently,the subsection support could be used for the deep shaft to reduce the investment cost.The study results provide some reference for the excavation load calculation and optimization design of hard rock shaft.

参考文献/References:

[1]王文,孙三祥.隧道竖井外流场模拟及风塔外型结构优化研究[J].中国安全生产科学技术,2020,16(6):140-146. WANG Wen,SUN Sanxiang.Study on flow field simulation outside shaft and structure optimization on exterior of wind tower in tunnel [J].Journal of Safety Science and Technology,2020,16(6):140-146.
[2]王永东,覃桢杰,何志伟,等.公路隧道互补结合竖井送排的改进型混合通风方式研究[J].中国公路学报,2020,33(4):106-114. WANG Yongdong,QIN Zhenjie,HE Zhiwei,et al.Improved mixed ventilation mode combined double-hole complementarity with blowing and exhausting shaft in highway tunnel[J].China Journal of Highway and Transport,2020,33(4):106-114.
[3]王文,孙三祥,何世洋.隧道救援站通风网络优化设计及人员疏散研究[J].中国安全生产科学技术,2020,16(8):57-62. WANG Wen,SUN Sanxiang,HE Shiyang.Study on optimization design of ventilation network and personnel evacuation in tunnel rescue station[J].Journal of Safety Science and Technology,2020,16 (8):57-62.
[4]曾大仁,李胜宗,黄淮彬.雪山隧道从竖井增辟工作面施工探讨[J].隧道建设,2007(S2):337-343. ZENG Daren,LI Shengzong,HUANG Huaibin.Additional working faces through the shaft of Xueshan tunnel[J].Tunnel Construction,2007(S2):337-343.
[5]吴怀俊.立井井壁破坏应力研究[J].中国安全科学学报,2003,13(7):24-27,83. WU Huaijun.Study on failure stress of shaft wall[J].China Safety Science Journal,2003,13(7):24-27,83.
[6]刘金龙,陈陆望,王吉利.立井井壁温度应力特征分析[J].岩土力学,2011,32(8):2386-2390. LIU Jinlong,CHEN Luwang,WANG Jili.Characteristic analysis of temperature stresses of shaft wall[J].Rock and Soil Mechanics,2011,32(8):2386-2390.
[7]周晓敏,胡启胜,马成炫,等.围岩对竖井井壁承载能力影响的对比研究[J].煤炭学报,2012,37(S1):26-32. ZHOU Xiaomin,HU Qisheng,MA Chengxuan,et al.Comparing research on effect of enclosure rock to enhance bearing capacity of shaft lining[J].Journal of China Coal Society,2012,37(S1):26-32.
[8]郭继林,张俊儒,李小刚,等.一种改进的硬质岩深竖井反井施工技术及竖井围岩压力取值探讨[J].隧道建设,2016,36(5):585-591. GUO Jilin,ZHANG Junru,LI Xiaogang,et al.An improved raise-boring method for hard-rock deep vertical shaft and discussion on determination of surrounding rock pressure[J].Tunnel Construction,2016,36(5):585-591.
[9]吴迪.深井施工围岩稳定性研究[D].沈阳:东北大学,2011.
[10]罗礼,桑玉发.岩石与支护相互作用原理在竖井稳定性分析中的应用[J].矿业研究与开发,1994(1):21-28. LUO Li,SANG Yufa.Application of interaction principle between rock and support in shaft stability analysis [J].Mining Research and Development,1994(1):21-28.
[11]胡晓旭,武文东.深冻结斜井建井技术及监测技术研究[J].煤炭工程,2018,50(6):54-58. HU Xiaoxu,WU Wendong.Research on construction and inspection technology of deep freezing inclined shaft[J].Coal Engineering,2018,50(6):54-58.
[12]杨继华,魏斌,齐三红,等.厄瓜多尔CCS水电站超深竖井反井钻机法施工关键问题研究[J].现代隧道技术,2018,55 (6):183-189. YANG Jihua,WEI Bin,Qi Sanhong,et al.Key issues in raise boring of super-deep vertical shafts of CCS hydropower station in Ecuador[J].Modern Tunnelling Technology,2018,55 (6):183-189.
[13]袁振国.倒挂井壁法在联络通道施工中的应用[J].中国安全生产科学技术,2019,15(S1):116-120. YUAN Zhenguo.Application of the inverted side-wall method in connection passage construction [J].Journal of Safety Science and Technology,2019,15(S1):116-120.
[14]韩瑀萱,冷希乔,严金秀,等.米仓山特长隧道竖井施工技术[J].现代隧道技术,2019,56(3):133-138. HAN Yuxuan,LENG Xiqiao,YAN Jinxiu,et al.Construction technology of vertical shaft in Micangshan tunnel[J].Modern Tunnelling Technology,2019,56(3):133-138.
[15]HOKE E,BROWN E T.Practical estimates of rock mass strength[J].International Journal of Rock Mechanics & Mining Sciences,1997,34(8):1165-1186.
[16]BARTON N.Some new Q-value correlations to assist in site characterization and tunnel design[J].International Journal of Rock Mechanics & Mining Sciences,2002,39(2):185-216.
[17]CAI M,KAISER P K,TASAKA Y,et al.Determination of residual strength parameters of jointed rock masses using the GSI system[J].International Journal of Rock Mechanics & Mining Sciences,2007,44(2):247-265.
[18]HOEK E,CARRANZA-TORRES C T,CORKUM B.Hoek-Brown failure criterion-2002 edition[C]// Proc.NARMS-TAC Conference,Toronto,2002,1,267-273.
[19]申艳军,徐光黎,张璐,等.基于Hoek-Brown准则的开挖扰动引起围岩变形特性研究[J].岩石力学与工程学报,2010,29(7):1355-1362. SHEN Yanjun,XU Guangli,ZHANG Lu,et al.Study on deformation characteristics of surrounding rock caused by excavation disturbance based on Hoek-Brown criterion[J].Chinese Journal of Rock Mechanics and Engineering,2010,29(7):1355-1362.
[20]中华人民共和国交通运输部.公路隧道设计规范:JTG D70—2004[S].北京:中国交通出版社,2004.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期: 2021-02-01
* 基金项目: 国家自然科学基金项目(52078428)
作者简介: 蒲松,硕士研究生,主要研究方向为隧道围岩稳定性。
通信作者: 方勇,博士,教授,主要研究方向为特殊及复杂山岭隧道施工受力。
更新日期/Last Update: 2021-11-03