|本期目录/Table of Contents|

[1]邵小强,赵轩,聂馨超,等.1种抑制巷道信号NLOS的矿井RSSI高精度定位算法*[J].中国安全生产科学技术,2021,17(9):18-24.[doi:10.11731/j.issn.1673-193x.2021.09.003]
 SHAO Xiaoqiang,ZHAO Xuan,NIE Xinchao,et al.A RSSI high-precision localization algorithm for suppressing roadway signals NLOS of mine[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2021,17(9):18-24.[doi:10.11731/j.issn.1673-193x.2021.09.003]
点击复制

1种抑制巷道信号NLOS的矿井RSSI高精度定位算法*
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
17
期数:
2021年9期
页码:
18-24
栏目:
学术论著
出版日期:
2021-09-30

文章信息/Info

Title:
A RSSI high-precision localization algorithm for suppressing roadway signals NLOS of mine
文章编号:
1673-193X(2021)-09-0018-07
作者:
邵小强赵轩聂馨超郭德锋郑润洋卫晋阳赵宇
(西安科技大学 电气与控制工程学院,陕西 西安 710054)
Author(s):
SHAO Xiaoqiang ZHAO Xuan NIE Xinchao GUO Defeng ZHENG Runyang WEI Jinyang ZHAO Yu
(School of Electric and Control Engineering,Xi’an University of Science and Technology,Xi’an Shaanxi 710054,China)
关键词:
矿井定位RSSI高斯滤波卡尔曼滤波指纹定位NLOS
Keywords:
mine localization received signal strength indication (RSSI) Gaussian filter Kalman filter fingerprint localization non line of sight (NLOS)
分类号:
X936;TD76
DOI:
10.11731/j.issn.1673-193x.2021.09.003
文献标志码:
A
摘要:
在RSSI(Received Signal Strength Indication)测距定位技术中,为抑制巷道信号NLOS(Non Line of Sight)传输对定位结果的影响,提出信号指纹定位和几何优化算法。在离线阶段利用高斯滤波最大值加权法和最小二乘法建立符合矿井巷道环境的无线信号测距模型,设计改进卡尔曼滤波器平滑处理离线信号值,抑制巷道信号NLOS传输带来的影响,建立离线信号指纹库;在线定位阶段,利用加权K最近邻法(WKNN)将定位目标接收到的信号值与指纹库中的信号值进行匹配,将匹配到的最优信号值参与测距定位计算,最后通过几何优化算法将定位结果归一化处理,使其符合一维定位分布。结果表明:所提算法的平均定位误差为0.9 m,相比于高斯滤波最大值加权法、经典卡尔曼滤波指纹定位算法和改进卡尔曼滤波指纹定位方法,其平均误差分别减小2.36,1.17,0.35 m。所提算法能够有效抑制巷道信号NLOS传输对RSSI测距定位的影响,可实现RSSI方法在矿井NLOS环境中的有效应用。
Abstract:
In order to suppress the influence of the non line of sight (NLOS) transmission of roadway signals on the localization results in the ranging localization technology of received signal strength indication (RSSI),the signal fingerprint localization and geometric optimization algorithms were put forward.In the off-line stage,the maximal weighted method and least square method of Gaussian filter were used to establish the wireless signal ranging model in line with the mine roadway environment,then an improved Kalman filter was designed to smoothly process the off-line signal values for suppressing the influence of NLOS transmission of roadway signals,and a fingerprint database of off-line signals was established.In the online localization stage,the weighted K-nearest neighbor method (WKNN) was used to match the signal values received by the localization target with the signal values in the fingerprint database,and the matched optimal signal value was involved in the calculation of ranging localization.Finally,the localization results were normalized through the geometric optimization algorithm to make them conform to the one-dimensional localization distribution.The results showed that the average localization error of the proposed algorithm was 0.9 m,which was 2.36 m,1.17 m and 0.35 m less than that of the Gaussian filter maximum weighted method,the classical Kalman filter fingerprint localization algorithm and the improved Kalman filter fingerprint localization method,respectively.The proposed algorithm can effectively suppress the influence of NLOS transmission of roadway signals on the RSSI ranging localization,and realize the effective application of RSSI method in the NLOS environment of mine.

参考文献/References:

[1]罗尚,肖东升.一种面向震后压埋人员的RSSI快速定位算法[J].测绘科学,2020,45(6):142-149. LUO Shang,XIAO Dongsheng.A RSSI fast localization algorithm for buried personnel after earthquake[J].Science of Surveying and Mapping,2020,45(6):142-149.
[2]FRANCISCO J A,MARTIN R P.A method of characterizing radio signal space for wireless device localization[J].Tsinghua Science and Technology,2015,20(4):385-408.
[3]胡青松,张赫男,王鹏,等.目标定位中的非视距传播研究综述[J].工矿自动化,2020,46(7):16-27. HU Qingsong,ZHANG Henan,WANG Peng,et al.Non-line-of-sight propagation in object location:a survey[J].Industry and Mine Automation,2020,46(7):16-27.
[4]PANG F,DOANAY K,NGUYEN N H,et al.AOA pseudolinear target motion analysis in the presence of sensor location errors[J].IEEE Transactions on Signal Processing,2020,68:3385-3399.
[5]SHAO X Q,ZHAO X,NIE X C,et al.A geometric positioning method of mine TOA based on impro-ved kalman filter and parameter fitting[C]//IAEAC IEEE,2019.
[6]余修武,张可,周利兴,等.基于误差修正距离约束的深井巷道目标定位算法[J].中国安全生产科学技术,2017,13(5):68-72. YU Xiuwu,ZHANG Ke,ZHOU Lixing,et al.Study on target location algorithm of deep mine roadway with distance constraint based on error correction[J].Journal of Safety Science and Technology,2017,13(5):68-72.
[7]王生亮,刘根友,高铭,等.改进的自适应遗传算法在TDOA定位中的应用[J].系统工程与电子技术,2019,41(2):254-258. WANG Shengliang,LIU Genyou,GAO Ming,et al.Application ofimproved adaptive genetic algorithm in TDOA location[J].Systems Engineering and Electronics,2019,41(2):254-258.
[8]汪明,许亮.无线传感器网络精度优选RSSI协作定位算法[J].计算机应用,2018,38(7):1981-1988. WANG Ming,XU Liang.RSSI collaborative locaion algorithm of selecting preference accuracy for wireless sensor network[J].Computer Applications,2018,38(7):1981-1988.
[9]施伟,高军.无线传感器网络中基于RSSI的改进加权质心定位算法[J].计算机应用与软件,2015,32(12):68-70,104. SHI Wei,GAO Jun.An improved weighted centroid localization algorithm based on RSSI for wireless sensor networks[J].Computer Applications and Software,2015,32(12):68-70,104.
[10]岳俊梅,彭新光,李庆义,等.基于RSSI测距的煤矿井下定位研究[J].煤炭工程,2018,5(8):122-125. YUE Junmei,PENG Xinguang,LI Qingyi,et al.Research of underground coal mine positioning based on RSSI ranging[J].Coal Engineering,2018,5(8):122-125.
[11]崔丽珍,吴迪,康凯,等.基于改进卡尔曼滤波算法的煤矿井下跟踪方法[J].煤矿安全,2015,46(11):114-117. CUI Lizhen,WU Di,KANG Kai,et al.Underground coal mine tracking way based on improved kalman filter algorithm[J].Safety in Coal Mines,2015,46(11):114-117.
[12]段林甫,秦爽,万群.基于RSSI辅助的精确测距混合定位算法[J].电子科技大学学报,2019,48(3):331-335. DUAN Linfu,QIN Shuang,WAN Qun.A hybrid localization algorithm based on RSSI assisted precise distance measurement[J].Journal of University of Electronic Science and Technology of China,2019,48(3):331-335.
[13]余修武,范飞生,李睿,等.基于接收信号强度分区矿山无线定位算法[J].中国安全生产科学技术,2015,11(9):70-75. YU Xiuwu,FAN Feisheng,LI Rui,et al.Study on wireless positioning algorithm in mine based on received signal strength partition[J].Journal of Safety Science and Technology,2015,11(9):70-75.
[14]邵小强,李康乐,陈熙,等.基于改进卡尔曼滤波和参数拟合的矿井TOA定位方法[J].煤炭学报,2019,44(5):1616-1624. SHAO Xiaoqiang,LI Kangle,CHEN Xi,et al.MTOA positioning method of coalmine based on Kalman filter and parameter fitting[J].Journal of China Coal Society,2019,44(5):1616-1624.
[15]余修武,刘琴,张枫,等.基于UKF的深井监测移动节点定位算法[J].中国安全生产科学技术,2017,13(9):72-76. YU Xiuwu,LIU Qin,ZHANG Feng,et al.Positioning algorithm for mobile nodes monitoring in deep mine based on UKF [J].Journal of Safety Science and Technology,2017,13(9):72-76.

相似文献/References:

[1]余修武,周利兴,范飞生,等.基于新内点测试与Grid-SCAN的铀尾矿库监测定位算法[J].中国安全生产科学技术,2016,12(5):5.[doi:10.11731/j.issn.1673-193x.2016.05.001]
 YU Xiuwu,ZHOU Lixing,FAN Feisheng,et al.A localization algorithm for uranium tailings monitoring based on new interior point test and Grid-SCAN[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(9):5.[doi:10.11731/j.issn.1673-193x.2016.05.001]

备注/Memo

备注/Memo:
收稿日期: 2021-04-02;网络首发日期: 2021-08-04
* 基金项目: 国家自然科学基金项目(61603295);陕西省自然科学基础研究计划项目(2018JM6003)
作者简介: 邵小强,博士,副教授,主要研究方向为智慧矿山物联网建设、人员定位及路径规划。
通信作者: 赵轩,硕士研究生,主要研究方向为矿井人员定位。
更新日期/Last Update: 2021-10-02