|本期目录/Table of Contents|

[1]席杰,王兆丰,陈金生,等.基于覆岩破坏传递的超前自卸压区影响宽度研究*[J].中国安全生产科学技术,2021,17(6):46-51.[doi:10.11731/j.issn.1673-193x.2021.06.008]
 XI Jie,WANG Zhaofeng,CHEN Jinsheng,et al.Study on influence width of advanced self-relief pressure zone based on overburden failure transmission[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2021,17(6):46-51.[doi:10.11731/j.issn.1673-193x.2021.06.008]
点击复制

基于覆岩破坏传递的超前自卸压区影响宽度研究*()
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
17
期数:
2021年6期
页码:
46-51
栏目:
职业安全卫生管理与技术
出版日期:
2021-06-30

文章信息/Info

Title:
Study on influence width of advanced self-relief pressure zone based on overburden failure transmission
文章编号:
1673-193X(2021)-06-0046-06
作者:
席杰王兆丰陈金生李学臣李艳飞马雄伟
(1.河南理工大学 安全科学与工程学院,河南 焦作 454003;
2.河南理工大学 煤矿灾害预防与抢险救灾教育部工程研究中心,河南 焦作 454003;
3.煤炭安全生产与清洁高效利用省部共建协同创新中心,河南 焦作 454003;
4.焦作煤业(集团)有限责任公司,河南 焦作 454000;
5.河南能源集团焦煤公司古汉山矿,河南 焦作 454300)
Author(s):
XI Jie WANG Zhaofeng CHEN Jinsheng LI Xuechen LI Yanfei MA Xiongwe
(1.School of Safety Science and Engineering,Henan Polytechnic University,Jiaozuo Henan 454003;2.MOE Engineering Center of Mine Disaster Prevention and Rescue,Henan Polytechnic University,Jiaozuo Henan 454003;3.State Collaborative Innovation Center of Coal Work Safety and Clean-efficiency Utilization,Henan Polytechnic University,Jiaozuo Henan 454003;4.Jiaozuo Coal Industry (Group) Co.,Ltd.,Jiaozuo Henan 454000;5.Guhanshan Mine,Henan Energy Group Jiaozuo Co.,Ltd.,Jiaozuo Henan 454300)
关键词:
瓦斯抽采超前自卸压区摩尔库伦准则采动煤体覆岩破坏传递
Keywords:
gas drainage advanced self-relief pressure zone Mohr-Coulomb criterion mining-induced coal body overburden failure transmission
分类号:
X936;TD713
DOI:
10.11731/j.issn.1673-193x.2021.06.008
文献标志码:
A
摘要:
为确定超前自卸压区的宽度,将其更好地应用于边采边抽钻孔布置中,探讨影响超前自卸压范围的主要因素,揭示卸压区宽度与工作面超前支承压力的内在联系,根据压力拱曲线平移特性,提出在覆岩破坏传递过程中,冒落带随回采周期性垮落,造成超前支承压力重分布,简化工作面开采模型,推导计算卸压区宽度的理论新方法并进行现场试验验证。结果表明:通过实测采面前方顺层钻孔的瓦斯抽采纯量,确定超前自卸压区宽度为28~30 m;距工作面>20~40 m范围为卸压瓦斯高效抽采区,平均瓦斯抽采纯量0.074 m3/min,为卸压前的3.89倍;考虑覆岩破坏传递的超前自卸压区宽度计算值为29.97 m。计算值与实测结果较吻合,验证该方法的可行性,为井下卸压区高效抽采提供借鉴。
Abstract:
To determine the width of the advanced self-relief pressure zone and better apply it to the layout of boreholes while mining with gas drainage,the main factors affecting the range of advanced self-relief pressure were discussed,and the internal relationship between the width of pressure relief zone and the advanced support pressure of working face was revealed.According to the translational characteristics of the pressure arch curve,it was proposed that during the process of overburden failure transmission,the caving zone periodically collapsed with the mining,resulting in the redistribution of the advanced support pressure.After simplifying the mining model of working face,a new theoretical method for calculating the width of pressure relief zone was derived,and the field test verification was conducted.The results showed that through measuring the pure quantity of gas drainage of the bedding boreholes in front of the mining front,the width of the advanced self-relief pressure zone was determined to be 28~30 m.The range of >20~40 m away from the working face was the high-efficiency drainage area of pressure relief gas,and the average gas drainage pure quantity was 0.074 m3/min,which was 3.89 times of that before pressure relief.Considering the overburden failure transmission,the calculation value of the width of advanced self-relief pressure zone was 29.97 m,which was in good agreement with the measured results and verified the feasibility of this method.It provides a reference for the high-efficiency drainage in the underground pressure relief zone.

参考文献/References:

[1]俞启香,程远平.矿井瓦斯防治[M].徐州:中国矿业大学出版社,2012.
[2]袁亮.卸压开采抽采瓦斯理论及煤与瓦斯共采技术体系[J].煤炭学报,2009,34(1):1-8.YUAN Liang.Theory of pressure-relieved gas extraction and technique system of integrated coal production and gas extraction[J].Journal of China Coal Society,2009,34(1):1-8.
[3]王凯,郑吉玉,夏威,等.工作面采动煤体卸压增透效应研究与应用[J].煤炭科学技术,2014,42(6):65-70.WANG Kai,ZHENG Jiyu,XIA Wei,et al.Application and study on permeability improvement effect by pressure relief in mining-induced[J].Coal Science and Technology,2014,42(6):65-70.
[4]ZHAO P X,ZHUO R S,LI S G,et al.Analysis of advancing speed effect in gas safety extraction channels and pressure-relief gas extraction[J].Fuel,2020,265:116825.
[5]陈滔,王兆丰,李守堂,等.极近距离上邻近层超前卸压带宽度模拟与试验研究[J].能源与环保,2017,39(7):89-95.CHEN Tao,WANG Zhaofeng,LI Shoutang,et al.Simulated and experimental research of advanced pressure relief area width in extremely shortdistance overlying adjacent coal seam[J].China Energy and Environmental Protection,2017,39(7):89-95.
[6]付帅.基于钻孔气体漏失量法巷帮卸压带宽度确定研究[J].中国安全生产科学技术,2018,14(11):121-126.FU Shuai.Research on determination of pressure relief range at roadway sidewall based on borehole gas leakage quantity method[J].Journal of Safety Science and Technology,2018,14(11):121-126.
[7]郭敬远,魏国营.基于摩尔-库伦定则的卸压带范围预测[J].煤矿安全,2018,49(6):213-216.GUO Jingyuan,WEI Guoying.Prediction of range of pressure relief zone based on Mohr-coulomb rule[J].Safety in Coal Mines,2018,49(6):213-216.
[8]郑吉玉,田坤云.工作面前方煤体卸压区范围及瓦斯抽采应用[J].煤矿安全,2016,47(6):140-143.ZHENG Jiyu,TIAN Kunyun.Coal pressure relief zone and gas extraction application ahead of working face[J].Safety in Coal Mines,2016,47(6):140-143.
[9]任青文,张宏朝.关于芬纳公式的修正[J].河海大学学报(自然科学版),2001(6):109-111.REN Qingwen,ZHANG Hongchao.A modification of Fenner formula[J].Jounal of Hohai University,2001 (6):109-111.
[10]郝晋伟,齐庆新,舒龙勇,等.煤岩塑性软化及扩容特性对钻孔密封性的影响[J].煤炭学报,2019,44(5):1536-1543.HAO Jinwei,QI Qingxin,SHU Longyong,et al.Effect of plastic-softening and dilatancy of coal onsealing property of borehole[J].Journal of China Coal Society,2019,44(5):1536-1543.
[11]陈旭光,张强勇.高应力深部洞室模型试验分区破裂现象机制的初步研究[J].岩土力学,2011,32(1):84-90.CHEN Xuguang,ZHANG Qiangyong.Mechanism analysis of phenomenon of zonal disintegration in deep tunnel model test under high geostress[J].Rock and Soil Mechanics,2011,32(1):84-90.
[12]姚国圣,李镜培,谷拴成.考虑岩体扩容和塑性软化的软岩巷道变形解析[J].岩土力学,2009,30(2):463-467.YAO Guosheng,LI Jingpei,GU Shuancheng.Analytic solution to deformation of soft rock tunnel considering dilatancy and plastic softening of rock mass[J].Rock and Soil Mechanics,2009,30(2):463-467.
[13]汪永茂,李颖,王经明,等.煤壁矿压测定及其在沿空掘进中的应用[J].岩石力学与工程学报,2005(19):168-172.WANG Yongmao,LI Ying,WANG Jingming,et al.Mine pressure measurement in easurement in coal pillar and its application to roadway driven close to goaf[J].Chinese Journal of Rock Mechanics and Engineering,2005(19):168-172.
[14]程志恒,齐庆新,李宏艳,等.近距离煤层群叠加开采采动应力-裂隙动态演化特征实验研究[J].煤炭学报,2016,41(2):367-375.CHENG Zhiheng,QI Qingxin,LI Hongyan,et al.Evolution of the superimposed mining induced stress-fissure field under extracting of close distance coal seam group [J].Journal of China Coal Society,2016,41(2):367-375.
[15]余伟健,吴根水,刘海,等.薄煤层开采软弱煤岩体巷道变形特征与稳定控制[J].煤炭学报,2018,43(10):2668-2678.YU Weijian,WU Genshui,LIU Hai,et al.Deformation characteristics and stability control of soft coal-rock mining roadway in thin coal seam[J].Journal of China Coal Society,2018,43(10):2668-2678.
[16]谢小平,刘洪洋,梁敏富.半煤岩工作面保护层开采的卸压机理及回采设备选型[J].煤炭科学技术,2019,47(3):168-174.XIE Xiaoping,LIU Hongyang,LIANG Minfu.Study on mechanism of pressure relief and selection of key equipment for protective layer of semi-coal rock working face[J].Coal Science and Technology,2019,47(3):168-174.
[17]唐军华,白海波,杜锋.采场支承压力分区变异特征研究[J].采矿与安全工程学报,2011,28(2):293-297.TANG Junhua,BAI Haibo,DU Feng.Character of the zonal variation of abutment pressure in working faces[J].Journal of Mining & Safety Engineering,2011,28(2):293-297.
[18]谢和平,周宏伟,刘建锋,等.不同开采条件下采动力学行为研究[J].煤炭学报,2011,36(7):1067-1074.XIE Heping,ZHOU Hongwei,LIU Jianfeng,et al.Mining induced mechanical behavior in coal seams under different mining layouts[J].Journal of China Coal Society,2011,36(7):1067-1074.
[19]冯军发,周英,李回贵,等.试论近水平煤层采场的3种基本结构形式[J].煤炭学报,2016,41(10):2576-2587.FENG Junfa,ZHOU Ying,LI Huigui,et al.Three kinds of basic structures of working face in near horizontal coal seam[J].Journal of China Coal Society,2016,41(10):2576-2587.
[20]国家安全监管总局 国家煤矿安监局.国家能源局 国家铁路局.建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规范[S].北京:煤炭工业出版社,2017.
[21]李胜,毕慧杰,罗明坤,等.高瓦斯综采工作面顶板走向高抽巷布置研究[J].煤炭科学技术,2017,45(7);61-67.LI Sheng,BI Huijie,LUO Mingkun,et al.Study on high level gas drainage gateway layout along roof strike in high gassy mechanized coal mining face[J].Coal Science and Technology,2017,45(7):61-67.
[22]JIANG N,WANG C X,PAN H Y,et al.Modeling study on the influence of the strip filling mining sequence on mining-induced failure[J].Energy Science & Engineering,2020,8(6):2239-2255.

相似文献/References:

[1]姜二龙,刘健,蔡文鹏,等.深孔预裂爆破技术在低透气性回采工作面中的试验研究[J].中国安全生产科学技术,2013,9(7):20.[doi:10.11731/j.issn.1673-193x.2013.07.003]
 JIANG Er long,LIU Jian,CAI Wen peng,et al.Experiment study on deep hole pre-splitting blasting technology in low permeability outburst working face[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(6):20.[doi:10.11731/j.issn.1673-193x.2013.07.003]
[2]孙东生,刘健,蔡文鹏,等.高瓦斯低透气性煤层水力压裂技术的试验研究[J].中国安全生产科学技术,2013,9(9):49.[doi:10.11731/j.issn.1673-193x.2013.09.009]
 SUN Dong sheng,LIU Jian,CAI Wen peng,et al.Experimental study on hydraulic fracturing technology in high gas and low permeability coal seam[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(6):49.[doi:10.11731/j.issn.1673-193x.2013.09.009]
[3]李英明,杨明东,付永刚.U型工作面上隅角埋管瓦斯抽采数值模拟研究[J].中国安全生产科学技术,2013,9(12):16.[doi:10.11731/j.issn.1673-193x.2013.12.002]
 LI Ying-ming,YANG Ming-dong,FU Yong-gang.Numerical simulation on gas drainage with buried pipe in upper corner of U\|type working face[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(6):16.[doi:10.11731/j.issn.1673-193x.2013.12.002]
[4]蔡文鹏,刘健,孙东生,等.顶板走向高位钻孔瓦斯抽采技术的研究及应用[J].中国安全生产科学技术,2013,9(12):35.[doi:10.11731/j.issn.1673-193x.2013.12.005]
 CAI Wen peng,LIU Jian,SUN Dong sheng,et al.Research and application of gas drainage technique with highlocated drilling method along roof strike[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(6):35.[doi:10.11731/j.issn.1673-193x.2013.12.005]
[5]孙晓梅,吕品,刘琛琛,等.基于CFD及正交试验的工作面流场参数优化[J].中国安全生产科学技术,2014,10(4):54.[doi:10.11731/j.issn.1673-193x.2014.04.009]
 SUN Xiao mei,LV Pin,LIU Chen chen,et al.Optimization of flow field parameters in working face based on orthogonal experiment and CFD[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(6):54.[doi:10.11731/j.issn.1673-193x.2014.04.009]
[6]吴爱军,王巧莉.薛湖矿二2煤顺层钻孔瓦斯抽放的数值模拟与分析[J].中国安全生产科学技术,2014,10(6):90.[doi:10.11731/j.issn.1673-193x.2014.06.014]
 WU Ai jun,WANG Qiao li.Numerical simulation and analysis on gas extraction with bedding drillings in the 22 coal seam of Xuehu Mine[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(6):90.[doi:10.11731/j.issn.1673-193x.2014.06.014]
[7]杨明,闫潮,刘亚军.斜交高位钻孔抽采空区瓦斯设计及优化研究[J].中国安全生产科学技术,2014,10(7):117.[doi:10.11731/j.issn.1673-193x.2014.07.021]
 YANG Ming,YAN Chao,LIU Ya jun.Research and optimization of gas extraction in gob by skew high level boreholes[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(6):117.[doi:10.11731/j.issn.1673-193x.2014.07.021]
[8]戎立帆,柏发松,车志飞.下向穿层瓦斯抽采钻孔新型封孔方法及应用[J].中国安全生产科学技术,2014,10(8):64.[doi:10.11731/j.issn.1673-193x.2014.08.011]
 RONG Li-fan,BAI Fa-song,et al.New hole sealing method and application for gas extraction by downward cross-layer drilling[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(6):64.[doi:10.11731/j.issn.1673-193x.2014.08.011]
[9]徐雪战,孟祥瑞,赵光明,等.基于三维可视化的卸压区瓦斯穿层抽采仿真研究[J].中国安全生产科学技术,2014,10(9):77.[doi:10.11731/j.issn.1673-193x.2014.09.013]
 XU Xue-zhan,MENG Xiang-rui,ZHAO Guang-ming,et al.Virtual simulation of gas drainage drilling through layers in stress-relaxation zone based on three-dimensional visualization[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(6):77.[doi:10.11731/j.issn.1673-193x.2014.09.013]
[10]王文,李化敏,高保彬,等.远距离保护层开采煤层渗透特性及瓦斯抽采技术研究[J].中国安全生产科学技术,2014,10(11):84.[doi:10.11731/j.issn.1673-193x.2014.11.014]
 WANG Wen,LI Hua-min,GAO Bao-bin,et al.Study on permeability characteristic of coal seam and gas extractiontechniques in coal mining with long distance protection coal seam[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(6):84.[doi:10.11731/j.issn.1673-193x.2014.11.014]

备注/Memo

备注/Memo:
收稿日期: 2020-11-06
* 基金项目: 河南省高等学校重点科研项目(19B440002);河南省瓦斯地质与瓦斯治理重点实验室-省部共建国家重点实验室培育基地开放基金项目(WS2018B13);河南理工大学博士基金项目(B2018-58)
作者简介: 席杰,硕士研究生,主要研究方向为瓦斯灾害预测与防治。
更新日期/Last Update: