|本期目录/Table of Contents|

[1]曾俊娆,李鹏,高莲,等.基于TNPE的智能电网虚假数据注入攻击检测*[J].中国安全生产科学技术,2021,17(3):124-129.[doi:10.11731/j.issn.1673-193x.2021.03.019]
 ZENG Junrao,LI Peng,GAO Lian,et al.Detection of false data injection attacks in smart grids based on time neighbor preserving embedding (TNPE)[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2021,17(3):124-129.[doi:10.11731/j.issn.1673-193x.2021.03.019]
点击复制

基于TNPE的智能电网虚假数据注入攻击检测*
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
17
期数:
2021年3期
页码:
124-129
栏目:
职业安全卫生管理与技术
出版日期:
2021-03-31

文章信息/Info

Title:
Detection of false data injection attacks in smart grids based on time neighbor preserving embedding (TNPE)
文章编号:
1673-193X(2021)-03-0124-06
作者:
曾俊娆李鹏高莲沈鑫
(1.云南大学 信息学院,云南 昆明 650500;
2.云南省高校物联网技术及应用重点实验室,云南 昆明 650500;
3.云南电网有限责任公司 电力科学研究院,云南 昆明 650511)
Author(s):
ZENG Junrao LI Peng GAO LianSHEN Xin
(1.School of Information,Yunnan University,Kunming Yunnan 650500,China;
2.Internet of Things Technology and Application Key Laboratory of Universities in Yunnan,Kunming Yunnan 650500,China;
3.Yunnan Power Grid Co.,Ltd.,Kunming Yunnan 650511,China)
关键词:
电力系统状态估计时序近邻保持嵌入攻击检测
Keywords:
power system state estimation time neighbor preserving embedding attack detection
分类号:
X934
DOI:
10.11731/j.issn.1673-193x.2021.03.019
文献标志码:
A
摘要:
为实现智能电网中虚假数据注入攻击的实时检测,提高电力系统运行的安全性,采用1种基于时序近邻保持嵌入的方法,对正常状态下采集到的电网历史量测数据建立离线模型,得到T2统计限,将实时数据通过模型获得的T2统计量与离线模型的统计限进行对比,若超过统计限,则说明存在虚假数据注入攻击。该方法在提取局部空间结构特征的基础上,可同时获得与时间相关的动态特征。在IEEE30节点测试系统上进行仿真实验,并与ICA,PCA,NPE方法进行比较。结果表明:所提方法有高达100%的检测率,且有较低的误报率,能够有效应用在虚假数据注入攻击的检测中。
Abstract:
In order to realize the realtime detection of false data injection attacks in the smart grids and improve the safety of power system operation,a method based on the time neighbor preserving embedding (TNPE) was adopted,and an offline model was established for the historical measurement data of the power grid collected under normal conditions to obtain T2 statistical limit.The T2 statistics obtained through the model by the realtime data was compared with the T2 statistical limit of the offline model,and if the statistical limit was exceeded,it indicated that there was a false data injection attack.On the basis of extracting the local spatial structure features,this method could simultaneously obtain the timerelated dynamic features.The simulation experiment was carried out on the IEEE30 node test system and compared with the ICA,PCA,and NPE methods.The results showed that the method proposed in this paper had a detection rate of up to 100% and a low false alarm rate,which can be effectively applied in the detection of false data injection attacks.

参考文献/References:

[1]LIANG G,ZHAO J,LUO F,et al.A review of false data injection attacks against modern power systems [J].IEEE Transactions on Smart Grid,2017,8(4):1630-1638.
[2]HUG G,GIAMPAPA J A.Vulnerability assessment of AC state estimation with respect to false data injection cyber-attacks [J].IEEE Transactions on Smart Grid,2012,3(3):1362-1370.
[3]PASQUALETTI F,DORFLER F,BULLO F.Attack detection and identification in cyber-physical systems [J].IEEE Transactions on Automatic Control,2013,58(11):2715-2729.
[4]GALLI S,SCAGLIONE A,WANG Z.For the grid and through the grid:the role of power line communications in the smart grid [J].Proceedings of the IEEE,2011,99(6):998-1027.
[5]苏盛,吴长江,马钧,等.基于攻击方视角的电力CPS网络攻击模式分析[J].电网技术,2014,38(11):3115-3120. SU Sheng,WU Changjiang,MA Jun,et al.Attacker’s perspective based analysis on cyber attack mode to cyber-physical system [J].Power System Technology,2014,38(11):3115-3120.
[6]LIANG G,WELLER S R,ZHAO J,et al.The 2015 Ukraine blackout:implications for false data injection attacks [J].IEEE Transactions on Power Systems,2017,32(4):3317-3318.
[7]LIU Y,NING P,REITER M K.False data injection attacks against state estimation in electric power grids [C]//Proceedings of the 16th ACM Conference on Computer and Communications Security.Chicago:ACM,2009:21-32.
[8]BOBBA R B,ROGERS K M,WANG Q,et al.Detecting false data injection attacks on DC state estimation [C]//Preprints of the First Workshop on Secure Control Systems.Stockholm:IEEE,2010:1-9.
[9]DENG R,XIAO G,LU R.Defending against false data injection attacks on power system state estimation [J].IEEE Transactions on Industrial Informatics,2017,13(1):198-207.
[10]KIM T T,POOR H V.Strategic protection against data injection attacks on power grids [J].IEEE Transactions on Smart Grid,2011,2(2):326-333.
[11]VALENZUELA J,WANG J,BISSINGER N.Real-time intrusion detection in power system operations [J].IEEE on Transactions Power Systems,2013,28(2):1052-1062.
[12]LIU L,ESMALIFALAK M,DING Q,et al.Detecting false data injection attacks on power grid by sparse optimization [J].IEEE Transactions on Smart Grid,2014,5(2):612-621.
[13]石家宇,陈博,俞立.基于拉普拉斯特征映射学习的隐匿FDI攻击检测[J].自动化学报,2020,45(1):1-7. SHI Jiayu,CHEN Bo,YU Li.Stealthy FDI attack detection based on laplacian eigenmaps learning strategy [J].Acta Automatica Sinica,2020,45(1):1-7.
[14]HAO J,PIECHOCKI R J,KALESHI D,et al.Sparse malicious false data injection attacks and defense mechanisms in smart grids [J].IEEE Transactions on Industrial Informatics,2015,11(5):1-12.
[15]OZAY M,ESNAOLA I,VURAL F T Y,et al.Machine learning methods for attack detection in the smart grid [J].IEEE Transactions on Neural Networks and Learing Systems,2015,27(8):1773-1786.
[16]HE X,CAI D,YAN S,et al.Neighborhood preserving embedding [C]//Tenth IEEE International Conference on Computer Vision.Piscataway:ICCV,2005:1208-1213.
[17]苗爱敏,葛志强,宋执环,等.基于时序扩展的邻域保持嵌入算法及其在故障检测中的应用[J].华东理工大学学报(自然科学版),2014,40(2):218-224. MIAO Aimin,GE Zhiqiang,SONG Zhihuan,et al.Neighborhood preserving embedding based on temporal extension and its application in fault detection [J].Journal of East China University of Science and Technology (Natural Science Edition),2014,40(2):218-224. [18]RAY D Z,CARLOS E M S,ROBERT J T.MATPOWER:steadystate operations,planning,and analysis tools for power systems research and education [J].IEEE Transactions on Power Systems,2011,26(1):12-19.

相似文献/References:

[1]吴发旺.电力突发事件应急管理中的博弈[J].中国安全生产科学技术,2011,7(3):73.
 WU Fa-wang.Game on emergency management of power incident[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2011,7(3):73.
[2]彭鹏,彭佳红.基于多元线性回归模型的电力负荷预测研究[J].中国安全生产科学技术,2011,7(9):158.
 PENG Peng,PENG Jia-hong.Research on the prediction of power load based on Multiple linear regression model[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2011,7(3):158.
[3]岳宝强,孙世军,杨立超,等.基于贝叶斯网络的危化品爆炸事故电力系统风险评估模型*[J].中国安全生产科学技术,2021,17(1):155.[doi:10.11731/j.issn.1673-193x.2021.01.025]
 YUE Baoqiang,SUN Shijun,YANG Lichao,et al.Risk assessment model of electricity system in hazardous chemicals explosion accident based on Bayesian network[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2021,17(3):155.[doi:10.11731/j.issn.1673-193x.2021.01.025]

备注/Memo

备注/Memo:
收稿日期: 2020-12-08
* 基金项目: 国家自然科学基金项目(61763049);云南省应用基础研究重点课题项目(2018FA032)
作者简介: 曾俊娆,硕士研究生,主要研究方向为智能电网攻击检测、电力大数据处理。
通信作者: 李鹏,博士,副教授,主要研究方向为智能电网运行和控制、电力信息物理融合系统。
更新日期/Last Update: 2021-04-13