|本期目录/Table of Contents|

[1]孔祥北,陈思凝,魏利军.储氢材料Kβ-MgH2的动态真空安定性研究[J].中国安全生产科学技术,2020,16(11):19-25.[doi:10.11731/j.issn.1673-193x.2020.11.003]
 KONG Xiangbei,CHEN Sining,WEI Lijun.Study on dynamic vacuum stability of Kβ-MgH2 hydrogen storage material by DVST[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2020,16(11):19-25.[doi:10.11731/j.issn.1673-193x.2020.11.003]
点击复制

储氢材料Kβ-MgH2的动态真空安定性研究
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
16
期数:
2020年11期
页码:
19-25
栏目:
学术论著
出版日期:
2020-11-30

文章信息/Info

Title:
Study on dynamic vacuum stability of Kβ-MgH2 hydrogen storage material by DVST
文章编号:
1673-193X(2020)-11-0019-07
作者:
孔祥北陈思凝魏利军
(中国安全生产科学研究院,北京 100012)
Author(s):
KONG Xiangbei CHEN Sining WEI Lijun
(China Academy of Safety Science and Technology,Beijing 100012,China)
关键词:
储氢材料真空安定性动态真空安定性分解放气
Keywords:
hydrogen storage material VST DVST decomposition deflation
分类号:
X932
DOI:
10.11731/j.issn.1673-193x.2020.11.003
文献标志码:
A
摘要:
为研究储氢材料Kβ-MgH2分解放气过程,在以10 ℃为步长,80~130 ℃区间内,48,120 h时间条件下,采用基于传感器压力变化计算被测物质分解放气量的动态真空安定性测试(DVST)方法,得到在上述条件下Kβ-MgH2分解过程中的压力变化、Kβ-MgH2的单位分解放气量和在不同研究温度下的分解放气规律,分析DVST测试时长的设置方法,验证Kβ-MgH2在时温等效系数为2.5时的时温等效特性。结果表明:在选定的测试条件下,Kβ-MgH2分解放气量稳定,单位分解放气量与样品状态无关;Kβ-MgH2单位质量放气量先快速增加,随后趋于平稳,测试温度越高,Kβ-MgH2放气速率越快,单位质量放气量越大;根据选定的测试温度和温度变化步长,可知Kβ-MgH2分解放气过程具有时温等效性。
Abstract:
In order to study the outgassing process of hydrogen storage material Kβ-MgH2,this paper studied the decomposition process of Kβ-MgH2 at 10 ℃ for 48 h and 120 h at 80 ℃~130 ℃,the dynamic vacuum stability test (DVST) method calculating the decomposition deflation volume of tested material based on the change of sensor pressure was used to obtained the pressure change during the decomposition process of Kβ-MgH2 under the above conditions,the unit decomposition deflation volume of Kβ-MgH2,and the decomposition deflation laws under different research temperatures.The setting method of DVST test duration was analyzed,and the timetemperature equivalent characteristics of Kβ-MgH2 when the timetemperature equivalent coefficient was 2.5 were verified.The results showed that under the selected test conditions,the decomposition deflation volume of Kβ-MgH2 was stable,and the unit decomposition deflation volume had nothing to do with the state of sample.The unit mass deflation volume of Kβ-MgH2 first increased rapidly,and then tended to stabilize.The higher the test temperature,the faster the deflation rate of Kβ-MgH2,and the larger the unit mass deflation volume.According to the selected test temperature and temperature change step,the decomposition deflation process of Kβ-MgH2 was timetemperature equivalent.

参考文献/References:

[1]杨静怡.储氢材料的研究及其进展[J].现代化工,2019,39(10):51-55. YANG Jingyi.Research and progress in hydrogen storage materials [J].Modern Chemical Industry,2019,39(10):51-55.
[2]许炜,陶占良,陈军.储氢研究进展[J].化学进展,2006,18(2/3):200-210. XU Wei,TAO Zhanliang,CHEN Jun.Progress of research on hydrogen storage [J].Progress in Chemistry,2006,18(2/3):200-210.
[3]李超,范美强,陈海潮,等.Li-Mg-N-H体系储氢材料的热力学和动力学调控[J].化学进展,2016,28(12):1788-1797. LI Chao,FAN Meiqiang,CHEN Haichao,et al.Thermodynamics and kinetics modifications on the Li-Mg-N-H hydrogen storage system [J].Progress in Chemistry,2016,28(12):1788-1797.
[4]林静,赵东江,王立民.储氢材料及研究进展[J].绥化学院学报,2017,37(8):141-145. LIN Jing,ZHAO Dongjiang,WANG Limin.Hydrogen storage materials and research progress[J].Journal of Suihua University,2017,37(8):141-145.
[5]王文龙,史琳莹,刘宝忠,等.Mg基储氢合金的研究现状[J].河南化工,2019,36(5):3-7. WANG Wenlong,SHI Linying,LIU Baozhong,et al.Research status of Mg-based hydrogen storage alloys[J].Henan Chemical Industry,2019,36(5):3-7.
[6]尹艳丽,杨利,胡晓春,等.动态真空安定性试验(DVST)方法研究(Ⅱ):RDX的热分解[J].含能材料,2010,18(4):387-392. YIN Yanli,YANG Li,HU Xiaochun,et al.Study on dynamic vacuum stability test (DVST) method (Ⅱ):thermal decomposition of RDX[J].Chinese Journal of Energetic Materials,2010,18(4):387-392.
[7]刘芮,尹艳丽,张同来,等.动态真空安定性试验方法研究(Ⅳ):HMX的热分解[J].含能材料,2011,19(6):650-655. LIU Rui,YIN Yanli,ZHANG Tonglai,et al.Study on dynamic vacuum stability test (DVST) method (Ⅳ):thermal decomposition of HMX[J].Chinese Journal of Energetic Materials,2011,19(6):650-655.
[8]肖依依,彭汝芳,金波,等.动态真空安定性测试新方法及CL-20热分解动力学研究(英文)[C]//OSEC首届兵器工程大会论文集.中国兵工学会、重庆市科学技术协会:兵器装备工程学报编辑部,2017:708-716.
[9]刘剑超,姜雨彤,张同来,等.动态真空安定性方法评估LA和CMC-LA热安定性[J].含能材料,2015,23(10):1020-1023. LIU Jianchao,JIANG Yutong,ZHANG Tonglai,et al.Evaluation of the thermal stability of LA and CMC-LA by dynamic vacuum stability test method [J].Chinese Journal of Energetic Materials,2015,23(10):1020-1023.
[10]刘芮,周遵宁,杨利,等.动态真空安定性测试方法研究含能材料的热分解[C]//中国化学会成立80周年第十六届全国化学热力学和热分析学术会议论文集.中国化学会化学热力学和热分析专业委员会:中国化学会,2012:74-83.
[11]张同来,胡晓春,杨利,等.动态真空安定性试验方法研究(Ⅰ)[J].含能材料,2009,17(5):549-553. ZHANG Tonglai,HU Xiaochun,YANG Li,et al.Study on dynamic vacuum stability test method(Ⅰ) [J].Chinese Journal of Energetic Materials,2009,17(5):549-553.
[12]MERRICK W,SEYMOUR J L,高荣庆.真空安定性试验在实用技术方面的发展[J].火炸药,1981(5):58-62. MERRICK W,SEYMOUR J L,GAO Rongqing.Development of vacuum stability test in practical technology [J].Explosive,1981(5):58-62.
[13]North Atlantic Treaty Organization (NATO) ,Military Ageney For Standardization (MAS).Explosives:vacuum stability test:stanag No.4556[S].Brussels-BE:North Atlantic Treaty Organization (NATO) ,Military Ageney For Standardization (MAS),1999.
[14]North Atlantic Treaty Organization (NATO),Military Agency For Standardization (MAS).Chemical compatibility of ammunition components with explosives (non-nuclear applications):stanag No.4147[S].Brussels-Be:North Atlantic Treaty Organization (NATO),Military Agency For Standardization (MAS),2001.
[15]国防科学技术工业委员会.烟火药感度和安定性试验方法 第10部分:真空安定性和相容性试验压力传感器法:GJB 5383.10—2005[S].北京:国防科学技术工业委员会,2005.
[16]国防科学技术工业委员会.火工品药剂试验方法 第12部分:真空安定性试验压力传感器法:GJB 5891.12—2006[S].北京:国防科学技术工业委员会,2006.
[17]国防科学技术工业委员会.炸药试验方法:GJB 772A—1997[S].北京:国防科学技术工业委员会,1997.
[18]弗朗西斯·施特塞尔.化工工艺的热安全——风险评估与工艺设计[M].北京:科学出版社,2009:79.
[19]MARTINA C,PETER O K,JOZEF L,et al.Observation of changes in chosen properties of plastic explosives during artificial ageing[J].New Trends in Research of Energetic Materials,2006:529-538.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期: 2020-08-20
作者简介: 孔祥北,本科,工程师,主要研究方向为化学品及化工安全。
通信作者: 陈思凝,博士,教授级高级工程师,主要研究方向为化学品及化工安全。
更新日期/Last Update: 2020-12-06