|本期目录/Table of Contents|

[1]黎胜,江旭雅,杨晨.基于RFPA2D复合局部挠曲岩体数值模拟[J].中国安全生产科学技术,2020,16(6):11-15.[doi:10.11731/j.issn.1673-193x.2020.06.002]
 LI Sheng,JIANG Xuya,YANG Chen.Numerical simulation of composite local flexural rock mass based on RFPA2D[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2020,16(6):11-15.[doi:10.11731/j.issn.1673-193x.2020.06.002]
点击复制

基于RFPA2D复合局部挠曲岩体数值模拟
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
16
期数:
2020年6期
页码:
11-15
栏目:
学术论著
出版日期:
2020-06-30

文章信息/Info

Title:
Numerical simulation of composite local flexural rock mass based on RFPA2D
文章编号:
1673-193X(2020)-06-0011-05
作者:
黎胜江旭雅杨晨
(1.中国矿业大学 资源与地球科学学院,江苏 徐州 221000;
2.中国矿业大学 建筑与设计学院,江苏 徐州 221000)
Author(s):
LI Sheng JIANG Xuya YANG Chen
(1.School of Resources and Geosciences,China University of Mining and Technology,Xuzhou Jiangsu 221000,China;
2.School of Architecture and Design,China University of Mining and Technology,Xuzhou Jiangsu 221000,China)
关键词:
RFPA2D复合岩体挠曲岩体岩体强度岩石裂隙
Keywords:
RFPA2D composite rock mass flexural rock mass strength of rock mass rock fracture
分类号:
X936;TU45
DOI:
10.11731/j.issn.1673-193x.2020.06.002
文献标志码:
A
摘要:
为研究复合局部挠曲岩体强度特征以及破坏规律,采用岩石真实破裂软件RFPA2D,对水平层面挠曲30°,45°,60°,75°的复合岩体进行单轴压缩试验模拟。模拟结果表明:挠曲角为30°,45°,60°,75°的复合岩体破坏面几乎与挠曲段夹层重合,其挠曲端部均产生了垂直于挠曲段夹层的裂纹;复合单斜岩体与复合挠曲岩体破坏面的形成因素大致相同,夹层强度是2种岩体失稳的主要因素;复合挠曲岩体单轴抗压强度随挠曲角增大同样呈“U”型变化,与单斜岩体变化趋势一致;当水平层状岩体发生挠曲后,其单轴抗压强度减小,当挠曲角为60°时,强度降低25.19%,当挠曲角为75°时,强度降低0.17%。;随着均质系数m的增大,复合挠曲岩体单轴抗压强度以及轴向应变均出现逐渐递增的趋势,且不同m值,其岩体裂隙扩展方式具有明显差别。
Abstract:
In order to study the strength characteristics and failure laws of the composite local flexural rock mass,the rock real fracture software RFPA2D was used to carry out the uniaxial compression test simulation on the composite rock mass with the horizontal bedding deflecting 30°,45°,60° and 75°,respectively.The simulation results showed that the failure surface of the composite rock mass with the deflection angle of 30°,45°,60° and 75° almost coincided with the flexural section interlayer,and the cracks being perpendicular to the inclined interlayer occurred at the end of flexure.The formation factors of failure surface on the composite monoclinic rock mass and the composite flexural rock mass were roughly the same,and the interlayer strength was the main factor causing the instability of two types of rock mass.The uniaxial compressive strength of composite flexural rock mass also changed in a “U” shape with the increase of deflection angle,which was the same as the monocline rock mass.After the horizontal stratified rock mass occurred the flexure,the uniaxial compressive strength strength decreased,when the deflection angle was 60°,reaching 25.19%,when the deflection angle was 75°,decreasing only 0.17%.With the increase of homogeneity coefficient m,both the uniaxial compressive strength and axial strain of composite flexural rock mass increased gradually,and the modes of rock fracture expansion had obvious difference when the m value changed.

参考文献/References:

[1]曾晟,江博为,邓显石,等.层状节理岩体模型冲击实验[J].中国安全生产科学技术,2016,12(1):176-180. ZENG Sheng,JIANG Bowei,DENG Xianshi,et al.Impact tests on model of layered and jointed rock mass[J].Journal of Safety Science and Technology,2016,12(1):176-180.
[2]李剑光.含倾斜软弱夹层复合岩体强度及蠕变特性研究[D].青岛:青岛科技大学,2015.
[3]孙冰,袁登,曾晟,等.爆炸应力波在层状节理岩体中的传播规律试验研究[J].中国安全生产科学技术,2015,11(11):118-123. SUN Bing,YUAN Deng,ZENG Sheng,et al.Experimental study on propagation law of explosion stress wave in bedding joint rock mass[J].Journal of Safety Science and Technology,2015,11(11):118-123.
[4]潘洪月,张丽,宛良朋,等.层状岩体横观各向同性劣化模型研究[J].水电与新能源,2020,34(1):52-57 PAN Hongyue,ZHANG Li,WAN Liangpeng,et al.A transversely isotropic deterioration model for layered rock mass[J].Hydropower and New Energy,2020,34(1):52-57.
[5]刘新荣,余海龙,姜德义,等.岩盐顶板复合岩石力学性质试验研究[J].重庆建筑大学学报,2004(3):32-35,58. LIU Xinrong,YU Hailong,JIANG Deyi,et al.Experimental study of compound rock’s behavior at rock salt’s over-layer[J].Journal of Chongqing Jianzhu University,2004(3):32-35,58.
[6]殷鹏飞.层状复合岩石试样力学特性单轴压缩试验与颗粒流模拟研究[D].徐州:中国矿业大学,2016.
[7]YONG M T,MING C K.A failure criterion for transversely isotropic rocks[J].International Journal of Rock Mechanics & Mining Sciences,2001,38(3):399-412.
[8]宋彦琦,李名,刘江,等.含不同倾角天然软弱夹层的大理岩破坏试验[J].中国矿业大学学报,2015,44(4):623-629. SONG Yanqi,LI Ming,LIU Jiang,et al.Experimental test on marble containing natural waek interlayer of different angles[J].Journal of China University of Mining & Technology 2015,44(4):623-629.
[9]王洪建,刘大安,黄志全,等.层状页岩岩石力学特性及其脆性评价[J].工程地质学报,2017,25(6):1414-1423. WANG Hongjian,LIU Daan,HUANG Zhiquan,et al.Mechanical properties and brittleness evaluation of layered shale rock[J].Journal of Engineering Geology,2017,25(6):1414-1423.
[10]WEN S,ZHANG C S,CHANG Y L,et al.Dynamic compression characteristics of layered rock mass of significant strength changes in adjacent layers[J].Journal of Rock Mechanics and Geotechnical Engineering,2020,12(2):353-365.
[11]JAEGER J C.Shear failure of anisotropic rocks[J].Geology Magazine,1960,97(1):65-72.
[12]王晋生.阳煤五矿褶皱和挠曲构造对煤层开采的影响[J].煤矿开采,2015,20(1):20-22. WANG Jinsheng.Influence of fold and bend tectonic on coal mining in Yangmei 5th mine[J].Coal Mining Technology,2015,20(1):20-22.
[13]唐春安,赵文.岩石破裂全过程分析软件系统RFPA2D [J].岩石力学与工程学报,1997(5):109-110. TANG Chunan,ZHAO Wen.RFPA2D system for rock failure process analysis[J].Joumal of Rock Mechanics and Geotechnical Engineering,1997(5):109-110.
[14]CHUM A T.Numerical simulation of progressive rock failure and associated sei smicity[J].International Journal of Rock Mechanics and Mining Sciences,1997,34(2).249-261
[15]唐春安.岩石声发射规律数值模拟初探3[J].岩石力学与工程学报,1997,16(4):368-368. TANG Chunan.Numerical simulation of ae in rock failure[J].Joumal of Rock Mechanics and Geotechnical Engineering,1997,16(4):368-368.
[16]夏磊,姚劲松,蒋磊.层状类岩体室内制样方法及单轴压缩力学机理研究[J].水利与建筑工程报,2019,17(6):70-76,98. XIA Lei,YAO Jinsong,JIANG Lei.Samplepreparation method of layered rock and uniaxial compression mechanics mechanism[J].Journal of Water Resources and Architectural Engineering 2019,17(6):70-76,98.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期: 2020-05-19
作者简介: 黎胜,硕士研究生,主要研究方向为岩石力学与数值模拟。
更新日期/Last Update: 2020-07-07