[1]DAHLSTRAND F. Consequence analysis theory for alarm analysis[J]. Knowledge-Based Systems, 2002, 15(1): 27-36.
[2]WAN Yiming, YANG Fan, LYU Ning, et al. Statistical root cause analysis of novel faults based on digraph models[J]. Chemical Engineering Research & Design, 2013, 91(1): 87-99.
[3]YANG Fan, SHAH S L, XIAO De-yun. Signed directed graph modeling of industrial processes and their validation by Data-Based methods[C]//2010 CONFERENCE ON CONTROL AND FAULT-TOLERANT SYSTEMS (SYSTOL'10).Nice,France, 2010: 387-392.
[4]MAURYA M R, RENGASWAMY R, VENKATASUBRAMANIAN V. A systematic framework for the development and analysis of signed digraphs for chemical processes. 1. Algorithms and analysis[J]. Industrial & Engineering Chemistry Research, 2003, 42(20): 4789-4810.
[5]MAURYA M R, RENGASWAMY R, VENKATASUBRAMANIAN V. A systematic framework for the development and analysis of signed digraphs for chemical processes.2.Control loops and flowsheet analysis[J]. Industrial & Engineering Chemistry Research, 2003, 42(20): 4811-4827.
[6]HE Bo, CHEN Tao, YANG Xianhui. Root cause analysis in multivariate statistical process monitoring: Integrating reconstruction-based multivariate contribution analysis with fuzzy-signed directed graphs[J]. Computers & Chemical Engineering, 2014, 64: 167-177.
[7]MAURYA M R, RENGASWAMY R, VENKATASUBRAMANIAN V. A signed directed graph-based systematic framework for steady-state malfunction diagnosis inside control loops[J]. Chemical Engineering Science, 2006, 61(6): 1790-1810.
[8]CHANG C T, CHEN C Y. Fault diagnosis with automata generated languages[J]. Computers & Chemical Engineering, 2011, 35(2): 329-341.
[9]BAUER M, THORNHILL N F. A practical method for identifying the propagation path of plant-wide disturbances[J]. Journal of Process Control, 2008, 18(7): 707-719.
[10]HAN Liu, GAO Huihui, XU Yuan, et al. Combining FAP, MAP and correlation analysis for multivariate alarm thresholds optimization in industrial process[J]. Journal of Loss Prevention in the Process Industries, 2016, 40: 471-478.
[11]GAO Huihui, XU Yuan, GU Xiangbai, et al. Systematic rationalization approach for multivariate correlated alarms based on interpretive structural modeling and Likert scale[J]. Chinese Journal of Chemical Engineering, 2015, 23(12): 1987-1996.
[12]ABELE L, ANIC M, GUTMANN T, et al. Combining Knowledge Modeling and Machine Learning for Alarm Root Cause Analysis[J]. IFAC Proceedings Volumes, 2013, 46(9):1843-1848.
[13]GAO J, TULSYAN A, YANG F, et al. A transfer entropy method to quantify causality in stochastic nonlinear systems[J]. IFAC-PapersOnLine, 2016, 49(7): 454-459.
[14]ZHAO Xiaojun, SHANG Pengjian, LIN Aijing. Transfer mutual information: A new method for measuring information transfer to the interactions of time series[J]. Physica a: Statistical Mechanics and Its Applications, 2017, 467: 517-526.
[15]SCHREIBER T. Measuring information transfer[J]. Physical Review Letters, 2000, 85(2): 461-464.
[16]HUANG Guangbin, ZHU Qinyu, SIEW C K. Extreme learning machine: Theory and applications[J]. Neurocomputing, 2006, 70(1/3): 489-501.
[17] HAJIHOSSEINI P, SALAHSHOOR K, MOSHIRI B. Process fault isolation based on transfer entropy algorithm[J]. ISA Transactions, 2014, 53(2): 230-240.