|本期目录/Table of Contents|

[1]徐晓虎,许开立,孙恩吉,等.熔融硝盐高温分解爆炸事故后果严重度评价[J].中国安全生产科学技术,2018,14(2):163-168.[doi:10.11731/j.issn.1673-193x.2018.02.026]
 XU Xiaohu,XU Kaili,SUN Enji,et al.Accident consequence evaluation on molten nitrates pytolisis[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(2):163-168.[doi:10.11731/j.issn.1673-193x.2018.02.026]
点击复制

熔融硝盐高温分解爆炸事故后果严重度评价
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
14
期数:
2018年2期
页码:
163-168
栏目:
职业安全卫生管理与技术
出版日期:
2018-02-28

文章信息/Info

Title:
Accident consequence evaluation on molten nitrates pytolisis
文章编号:
1673-193X(2018)-02-0163-06
作者:
徐晓虎1许开立1孙恩吉2陈兵2张培红1张旭宇3
(1. 东北大学 资源与土木工程学院,辽宁 沈阳 110819;2. 中国安全生产科学研究院,北京 100012;3. 首都航天机械公司 安技处,北京 100076)
Author(s):
XU Xiaohu1 XU Kaili1 SUN Enji2 CHEN Bing2 ZHANG Peihong1 ZHANG Xuyu3
(1. School of Resources and Civil Engineering, Northeastern University, Shenyang Liaoning 110819, China; 2. China Academy of Safety Science and Technology, Beijing 100012, China; 3. Occupation Safety and Health Management Department, Capital Space Machinery Corporation, Beijing 100076, China)
关键词:
热处理工艺熔融硝盐高温分解爆炸事故后果严重度TNT当量伤害半径
Keywords:
heat treatment process molten nitrate pyrolysis explosion accident consequence severity TNT equivalent damage radius
分类号:
X941
DOI:
10.11731/j.issn.1673-193x.2018.02.026
文献标志码:
A
摘要:
为评价热处理用硝盐槽熔融硝盐高温分解爆炸事故机理和后果严重度,结合某企业铝合金件硝盐固溶热处理工艺进行研究。 利用压缩气体容器爆炸能量计算模型、超压准则和TNT当量法估算热处理用硝盐槽内熔融硝盐高温分解爆炸事故后果,得出35 000 kg熔融硝盐在高温分解转化率为50%时爆炸的TNT当量为1 257.6 kg,爆炸会造成半径53.97 m范围内的人员轻伤,该结果和利用政府推荐的危险指数法得出的外部防护距离为50 m较为接近。 以上分析计算表明:超温爆炸过程中,熔融硝盐在硝盐槽中超温分解快速产生大量气体,在硝盐槽上盖及上部硝盐的阻挡下不能及时排出,致使硝盐槽内气体压力瞬间升高,形成类似于压力容器的空间,发生物理爆炸并引发高温硝盐喷溅。
Abstract:
To study the accident mechanism and consequence severity of pyrolysis explosion by the molten nitrate in the nitrate tank for the heat treatment, the research was carried out combined with the heat treatment process of the molten nitrate solid solution for the aluminum alloy parts in a certain enterprise. The accident consequence of pyrolysis explosion by the molten nitrate in the nitrate tank for the heat treatment was estimated by using the calculation model of explosion energy for the compressed gas vessel, the overpressure criterion and the TNT equivalent method. It showed that the TNT equivalent for the explosion of 35 000 kg molten nitrate was 1 257.6 kg when the pyrolysis conversion rate was 50%, and the explosion would cause the minor injuries of the personnel in the range with the radius of 53.97 m, which was relatively close to the external protection distance 50 m obtained by the risk index method recommended by the government. The results showed that in the process of overtemperature explosion, large amount of gas was produced rapidly by the overtemperature pyrolysis of molten nitrate in the nitrate tank, which could not be discharged in time by the blocking of the upper cover and the upper nitrate in the nitrate tank and caused the gas pressure in the nitrate tank increased instantaneously, so the space similar to the pressure vessel was formed, then the physical explosion occurred and induced the splash of high temperature nitrate.

参考文献/References:

[1] 赵步青, 胡会峰. 硝盐在热处理中的应用[J]. 热处理技术与装备, 2015, 36(4):38-42. ZHAO Buqing, HU Huifeng. Application of nitrate in heat treatment[J]. Heat Treatment Technology and Equipment, 2015, 36(4):38-42.
[2] 万时云, 陈思仁, 闯宏宇. 硝盐炉危险性分析及对策[C]//全国第十二届轻合金加工学术交流会论文集, 2003(8):328-329.
[3] 梁瑞, 张春燕, 姜峰, 等. 天然气管道泄漏爆炸后果评价模型对比分析[J]. 中国安全科学报, 2007(8):131-135. LIANG Rui, ZHANG Chunyan, JIANG Feng, et al. Comparative analysis of evaluation models for explosion consequence caused by leakage of natural gas pipelines[J]. China Safety Science Journal, 2007(8):131-135.
[4] 党文义, 刘昌华. 压缩气体容器物理爆炸计算模型[J]. 大庆石油学院学报, 2010(2):104-107. DANG Wenyi, LIU Changhua. Physical explosion calculation models of the pressurized gas vessels[J]. Journal of Daqing Petroleum Institute, 2010(2): 104-107.
[5] LIU Jie, KOSHIZUKA SEIICHI, OKA YOSHIAKI. Evaluation of the energy conversion ratio of vapor explosions for the assessment of nuclear reactor safety[J]. Journal of Nuclear Science and Technology, 2005, 42(1):28-39.
[6] LEE Seung Won, PARK Seong Dae, KANG Sarah, et al. Feasibility study on molten gallium with suspended nanoparticles for nuclear coolant applications[J]. Nuclear Engineering and Design, 2012(247): 147-159.
[7] 周源. 蒸汽爆炸中熔融金属液滴热碎化机理及模型研究[D]. 上海: 上海交通大学, 2014.
[8] 李德顺, 许开立. 冶金炉重大危险源辨识及其爆炸事故后果模拟[J]. 工业安全与环保, 2008(2): 38-40. LI Deshun, XU Kaili. Major hazard source identification for metallurgical furnace and consequence simulation of explosion accident[J]. Industrial Safety and Environmental Protection, 2008(2): 38-40.
[9] 辛琦. 熔融铝液遇水碎化分析及爆炸冲击波能量转化[D]. 北京: 北京理工大学, 2015.
[10] R P. TALEYARKHAN. Preventing melt-water explosions[J]. The Journal of The Minerals, Metals & Materials Society, 1998, 50(2):35-38.
[11] LEON D D. Prevention of molten aluminum-water explosion[J]. Aluminum Project Fact Sheet, 1999, 57(3): 28-33.
[12] LONG G. Explosion of molten aluminum in water[J]. Metal Progress, 1957(5): 107-112.
[13] SHOJI M, TAKAGI N. Thermal interaction when a cold volatile liquid droplet impinges on a hot liquid surface[J]. Bulletin of JSME, 1986, 29(250): 1183-1187.
[14] CICCARELLI G, FROST D L. Fragmentation mechanisms based on single drop steam explosion experiments using flash X-ray radiography[J]. Nuclear Engineering and Design,1994,146(1): 109-132.
[15] NELSON S. Steam explosion experiments with single drops of iron oxide melted with a CO2 laser[M]. NRC:NUREG/CR,1981.
[16] 曾周良, 石继红. 试论硝盐槽的爆炸及防范[J].航空工业劳动保护, 1988, 41(3):18-23. ZENG Zhouliang, SHI Jihong. The explosion and prevention of the nitrate bath tank[J]. Aviation Industry Labor Protection, 1988, 41(3): 18-23.
[17] 陈思仁, 闯宏宇, 孙志文. 一起铝材热处理用硝盐炉爆炸事故的原因分析与对策[J]. 轻合金加工技术, 2007, 35(10):26-27,53. CHEN Siren, CHUANG Hongyu, SUN Zhiwen. Countermove and analysis about explosion accident of nitrate furnace for aluminium material heat treatment[J]. Light Alloy Fabrication Technology, 2007, 35(10): 26-27,53.
[18] 宇德明. 易燃、易爆、有毒危险品储运过程定量风险评价[M].北京:中国铁道出版社,2000.
[19] 中国就业培训技术指导中心,中国安全生产协会组织编写.安全评价师(国家职业资格一级)(第2版)[M]. 北京:中国劳动社会保障出版社, 2010.
[20] 国家安全生产监督管理总局. 危险化学品生产、储存装置个人可接受风险标准和社会可接受风险标准(试行) 〔EB/OL〕. http://www.chinasafety.gov.cn/newpage/Contents/Channel_21111/2014/0509/234386/content_234386.htm,2014-05-07.

相似文献/References:

备注/Memo

备注/Memo:
“十三五”国家重点研发计划项目(2017YFC0805100);“十二五”科技支撑计划项目(2015BAK16B01)
更新日期/Last Update: 2018-03-19