|本期目录/Table of Contents|

[1]王武,陈涛,杨帅,等.T型结构压力管道流固耦合模拟与试验验证[J].中国安全生产科学技术,2017,13(10):5-11.[doi:10.11731/j.issn.1673-193x.2017.10.001]
 WANG Wu,CHEN Tao,YANG Shuai,et al.Simulation and experimental verification on fluid-structure interaction of T-shaped pressure pipeline[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(10):5-11.[doi:10.11731/j.issn.1673-193x.2017.10.001]
点击复制

T型结构压力管道流固耦合模拟与试验验证
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
13
期数:
2017年10期
页码:
5-11
栏目:
学术论著
出版日期:
2017-10-30

文章信息/Info

Title:
Simulation and experimental verification on fluid-structure interaction of T-shaped pressure pipeline
文章编号:
1673-193X(2017)-10-0005-07
作者:
王武1陈涛2杨帅1吴大转1于思琦1
(1.浙江大学 能源工程学院,浙江 杭州 310027;2. 杭州市特种设备检测研究院,浙江 杭州 310051)
Author(s):
WANG Wu1 CHEN Tao2 YANG Shuai1 WU Dazhuan1 YU Siqi1
(1. College of Energy Engineering, Zhejiang University, Hangzhou Zhejiang 310027, China; 2. Hangzhou Special Equipment Inspection and Research Institute, Hangzhou Zhejiang 310051, China)
关键词:
固耦合压力管道有限元振动
Keywords:
fluid-structure interaction pressure pipeline finite element vibration
分类号:
TH17
DOI:
10.11731/j.issn.1673-193x.2017.10.001
文献标志码:
A
摘要:
为研究T型压力管道结构内部流体非定常流动诱发的管道振动问题,采用流固耦合分析方法进行分析,借助有限元分析软件ADINA对输送气体介质的T型压力管道结构的进行了流固耦合数值模拟,得到了管内流体流动参数的变化以及管道应力分布规律,并预测了管道振动特性。同时,利用管道振动测试试验系统进行T型管道结构的振动特性进测试,得到压力管道耦合振动响应频率。结果表明:流固耦合数值计算的结果与试验结果能较好地吻合,流体介质的T型压力管道内存在明显的流固耦合效应,不考虑流固耦合作用结果与实验结果相差很大。
Abstract:
In order to analyze the problem of pipeline vibration induced by unsteady flow of internal fluid in T-shaped pressure pipeline, the fluid-structure interaction analysis method was adopted. The numerical simulation on the fluid-structure interaction of T-shaped pressure pipeline transporting gas medium was conducted by using the finite element analysis software ADINA. The change of internal fluid flow parameters and the stress distribution of the pipeline were obtained, and the vibration characteristics of the pipeline were predicted. Meanwhile, the experimental tests on the vibration characteristics of T-shaped pressure pipe were conducted by using the measuring and testing system of pipeline vibration, and the coupling vibration response frequency of the pressure pipeline was obtained. The results showed that the numerical calculation results of fluid-structure interaction were consistent with the experimental results. The effect of fluid-structure interaction was obvious in T-shaped pressure pipeline with fluid medium, while the results without considering the fluid-structure interaction had a great difference compared with the experimental results.

参考文献/References:

[1]Pramila, A., J. Laukkanen and S. Liukkonen. Dynamics and stabilityof short fluid-conveyin Timoshenko element pipes[J]. Journal of Sound & Vibration, 1991,144(3): 421-425.
[2]周建新, 吴轩,郭再富.美国管道事故对我国油气管道安全的启示[J]. 中国安全生产科学技术, 2014,10(S1): 73-78. ZHOU Jianxin,WU Xuan,GUO Zaifu. Enlightenment from incidents of oil and gas pipeline in USA[J].Journal of Safety science and Technology,2014,10(S1):73-78.
[3]刘延雷, 陈涛,杨志军,等.可变径管道漏磁检测有限元仿真与实验研究[J]. 中国安全生产科学技术, 2016,12(12): 42-47. LIU Yanlei, CHEN Tao,YANG Zhijun,et al. Finite element simulation and experimental research on variable diameter pipeline magnetic flux leakage nondestructive testing[J].Journal of Safetyscience and Technology,2016,12(12):42-47.
[4]李著信,苏毅,吕宏庆,等.管道在线检测技术及检测机器人研究[J]. 后勤工程学院学报, 2006,22(4): 41-45. LI Zhuxin,SU Yi,LYU Hongqing, et al. Research of pipeline on-line detection technology and detection robot[J]. Journal of logistics Engineering University, 2006,22(4):41-45.
[5]赵则祥, 王延年,朱强.长输油气管道泄漏检测方法[J]. 中原工学院学报, 2008,19(5): 10-14. ZHAO Zexiang,WANG Yannian,ZHU Qiang. Pipeline leakage detection mothed for long oil and gas pipelines[J]. Journal of Zhongyuan University of Technology, 2008,19(5):10-14.
[6]Feng, Y., X. Wang and D. Zhao. Investigation and Analysis of Pipeline Accidents[J]. China Offshore Oil & Gas,1999.
[7]Jin, W.L., et al.Cause Analysis and Countermeasure for Submarine Pipeline Failure[J]. Bulletin of Science & Technology, 2004.
[8]冯卫民,宋立,肖光宇. 基于ADINA的压力管道流固耦合分析[J]. 武汉大学学报(工学版),2009,42(2): 264-267. FENG Weimin,SONG Li,XIAO Guangning. Coupling analysis of fluid-structure interaction in pressure pipes based on ADINA[J]. Engineering Journal of Wuhan University,2009,42(2):264-267.
[9]刘昌领,罗晓兰,叶道辉,等. 一端固定一端简支输流管道流固耦合振动分析[J]. 设计与研究,2013(7): 19-23. LIU Changling, LUO Xiaolan,YE Daohui,et al. Vibration analysis of liquid-filled pipes with fixed-hinged under fluid structure interaction[J]. Design and Research,2013(7):19-23.
[10]李宝辉,高行山,刘永寿,等. 两端固支输流管道流固耦合振动稳定性分析[J]. 机械设计与制造,2010(2): 105-107. LI Baohui, GAO Xingshan,LIU Yongshou, et al. The stability analysis of liquid-filled pipes with fixed bearing at both end under FSI vibration[J]. Machinery Design and Manufacture Jixie Sheji yu Zhizao,2010(2):105-107.
[11]张毅鹏,侯建华,宋贝贝,等. 圆弧输流管道流固耦合力学特性分析[J]. 河南建材,2014(3): 29-30. ZHANG Yipeng, HOU Jianhua,SONG Beibei,et al. Analysis of fluid-solid coupling mechanical properties of circular arc pipeline[J].Henan Building Materials,2014(3):29-30.
[12]徐合力,蒋炎坤.弯曲输流管道流固耦合流动特性研究[J]. 武汉理工大学学报(交通科学与工程版),2008,32(2): 343-346. XU Heli,JIANG Yankun. Research on fluid-solid coupling flow characteristics of curved pipelines[J].Journal of Wuhan University of Technology(Transportation Science and Engineering),2008,32(2):343-346.
[13]俞树荣,马璐,余龙.弯曲输流管道流固耦合动力特性分析[J]. 噪声与振动控制,2015, 35(4): 43-47. YU Shurong,MA Lu,YU Long. Analysis of dynamic characteristics of fluid-structure interaction in curved infusion pipelines[J].Noise and Vibration Control,2015,35(4):43-47.
[14]张杰,梁政,韩传军. U型充液管道的流固耦合分析[J]. 应用力学学报,2015(1): 64-68. ZHANG Jie,LIANG Zheng,HAN Chuanjun. Analysis of fluid-structure interaction of U-type liquid pipelines[J]. Chinese Journal of Applied Mechanics,2015(1):64-68.
[15]许伟伟,武博,吴大转,等.非稳定流体与U形管路耦合振动特性研究[J]. 高校化学工程学报,2012(5): 770-774. XU Weiwei, WU Bo,WU Dazhuan,et al.Vibration investigation of U pipe interacted with unsteady fluid[J].Journal of Chemical Engineering of Chinese Universities,2012(5),770-774.
[16]丁毅,陈立民.基于 CFX-ANSYS的灌装头斜 T型管接头的流固耦合分析[J]. 包装工程,2011,1(15): 85-87. DING Yi,CHEN Limin. Flow-structure interaction analysis for the inclined T-tube joint of filling head based on CFX-ANSYS [J].Packaging Engineering,2001,1(15):85-87.
[17]张艳萍,徐治萍,刘土光,等.输液管道流固耦合的响应分析[J]. 中国舰船研究,2006,1(3): 66-69. ZHANG Yanpin, XU Zhiping,LIU Tuguang,et al. Response analysis of fluid-structure interaction in pipelines Transporting fluids[J].Chinese Journal of Ship Research,2006,1(3):66-69.

相似文献/References:

[1]胡华胜,王磊,傅如闻.基于RBI技术的化工装置压力管道风险评估与在线检验策略研究[J].中国安全生产科学技术,2014,10(6):171.[doi:10.11731/j.issn.1673-193x.2014.06.028]
 HU Hua sheng,WANG Lei,FU Ru wen.Research on risk assessment and onstream inspection strategy of pressure pipelines in chemical plant based on RBI technology[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(10):171.[doi:10.11731/j.issn.1673-193x.2014.06.028]
[2]刘延雷,陈涛,杨志军,等.可变径管道漏磁检测有限元仿真与实验研究[J].中国安全生产科学技术,2016,12(12):42.[doi:10.11731/j.issn.1673-193x.2016.12.007]
 LIU Yanlei,CHEN Tao,YANG Zhijun,et al.Finite element simulation and experimental research on diameter-variable pipeline magnetic flux leakage testing[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(10):42.[doi:10.11731/j.issn.1673-193x.2016.12.007]
[3]许乔奇,岳睿林,高楚霖,等.压力管道内部裂纹缺陷的锁相红外热成像检测研究*[J].中国安全生产科学技术,2023,19(12):16.[doi:10.11731/j.issn.1673-193x.2023.12.002]
 XU Qiaoqi,YUE Ruilin,GAO Chulin,et al.Research on lock-in infrared thermography detection of internal crack defects in pressure pipeline[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2023,19(10):16.[doi:10.11731/j.issn.1673-193x.2023.12.002]

备注/Memo

备注/Memo:
浙江省质监系统科技计划项目(20150237)
更新日期/Last Update: 2017-11-03