|本期目录/Table of Contents|

[1]管志川,胜亚楠,许玉强,等.基于PSO优化BP神经网络的钻井动态风险评估方法[J].中国安全生产科学技术,2017,13(8):5-11.[doi:10.11731/j.issn.1673-193x.2017.08.001]
 GUAN Zhichuan,SHENG Ya'nan,XU Yuqiang,et al.Dynamic risk assessment method of drilling based on PSO optimized BP neural network[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(8):5-11.[doi:10.11731/j.issn.1673-193x.2017.08.001]
点击复制

基于PSO优化BP神经网络的钻井动态风险评估方法
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
13
期数:
2017年8期
页码:
5-11
栏目:
学术论著
出版日期:
2017-08-31

文章信息/Info

Title:
Dynamic risk assessment method of drilling based on PSO optimized BP neural network
文章编号:
1673-193X(2017)-08-0005-07
作者:
管志川胜亚楠许玉强王庆张波
(中国石油大学(华东) 石油工程学院,山东 青岛 266580)
Author(s):
GUAN Zhichuan SHENG Ya'nan XU Yuqiang WANG Qing ZHANG Bo
(College of Petroleum Engineering, China University of Petroleum (East China), Qingdao Shandong 266580, China)
关键词:
PSO粒子群算法BP神经网络钻井动态风险评估 风险预警
Keywords:
PSO algorithm BP neural network dynamic risk assessment of drilling risk early-warning
分类号:
TE21
DOI:
10.11731/j.issn.1673-193x.2017.08.001
文献标志码:
A
摘要:
传统钻井动态风险评估严重依赖于专家主观判断、结果大多是定性或半定量,无法满足深井复杂地层钻井安全需求。针对该问题,研究建立了基于PSO优化BP神经网络的钻井动态风险评估方法。通过对录井资料的监测分析,实时判断井下风险发生的类型并定量计算风险发生概率,可以在风险发生的早期给出预警信息,及时指导风险调控措施的开展。海上BD气田的实例分析表明,基于构建的动态风险评估模型得到的风险预测结果与实际风险发生情况相符合,说明建立的模型是合理可行的。该模型对于钻井作业过程中动态风险评估具有一定的参考价值。
Abstract:
The traditional methods on dynamic risk assessment of drilling rely on the subjective judgment of experts seriously, and the results are mostly qualitative or semi-quantitative, which cannot meet the needs of drilling safety in the complex formation of deep wells. Aiming at this problem, a dynamic risk assessment model of drilling based on PSO algorithm optimized BP neural network was established. Through the monitoring and analysis of the logging data, the type of underground risk can be judged in real-time, and the probability of the risk can be calculated quantitatively, so the early-warning information can be given in the early stage of the risk, which can timely guide the implementation of risk control measures. The case analysis of offshore BD gas field showed that the risk prediction results obtained by the dynamic risk assessment model were consistent with the actual risk situation, which showed that the model was reasonable and feasible. The model has a certain reference value for dynamic risk assessment during the drilling operation process.

参考文献/References:

[1]陈庭根,管志川.钻井工程理论与技术[M]. 东营:石油大学出版社,2000: 251-254
[2]Bratton T, Edwards S, Fuller J, et al. Avoiding drilling problems [J]. Oilfield Review, 2001, 13(2):75-77.
[3]Ismail Z, Kong K K, Othman S Z, et al. Evaluating accidents in the offshore drilling of petroleum: regional picture and reducing impact[J]. Measurement, 2014, 51(1):18-33.
[4]Moos D, Peska P, Finkbeiner T, et al. Comprehensive wellbore stability analysis utilizing quantitative risk assessment [J]. Journal of Petroleum Science & Engineering, 2003, 38(4):97-109.
[5]增义金,刘建立.深井超深井钻井技术现状和发展趋势[J].石油钻探技术,2005,33(5):1-5. ZENG Yijin, LIU Jianli. Present situation and development trend of deep and ultra-deep well drilling technology [J]. Petroleum Drilling Technology, 2005, 33(5):1-5.
[6]蒋希文.钻井事故与复杂问题[M].2版. 北京:石油工业出版社,2006.
[7]高德利.复杂地质条件下深井超深井钻井技术[M].北京:石油工业出版社,2004.
[8]Khakzad N, Khan F, Amyotte P. Quantitative risk analysis of offshore drilling operations: A Bayesian approach [J]. Safety Science, 2013, 57(57):108-117.
[9]管志川,柯珂,路保平.压力不确定条件下套管层次及下深确定方法[J].中国石油大学学报(自然科学版),2009,33(4):71-75. GUAN Zhichuan, KE Ke, LU Baoping. An approach to casing program design with formation pressure uncertainties [J]. Journal of China University of Petroleum (Natural Science Edition), 2009, 33(4):71-75.
[10]Qiang L I, Zhang J, Xiao R J, et al. Tracing analysis on long distance transmission pipeline girth weld quality causes-based on analytical hierarchy process(AHP)[J]. Welded Pipe & Tube, 2007(1):67-71,86.
[11]Guan Zhich uan , Ke Ke , Lu Baoping .A new approach for casing program design with pressure uncertainties of deepwater exploration wells[R] .SPE 130822, 2010 .
[12]袁智, 汪海阁, 王海强,等. 基于事故树分析的钻井井漏事故危险评价研究[J]. 中国安全科学学报, 2010, 20(3):107-112. YUAN Zhi, WANG Haige, WANG Haiqiang,et al. Application of fault tree analysis to risk assessment of lost circulation hazards in drilling[J]. China Safety Science Journal, 2010, 20(3):107-112.
[13]高隽. 人工神经网络原理及仿真实例[M]. 北京:机械工业出版社, 2007.
[14]苏高利, 邓芳萍. 论基于MATLAB语言的BP神经网络的改进算法[J]. 科技通报, 2003, 19(2):130-135. SU Gaoli, DENG Fangping. On the improving backpropagation algorithms of the neural networks based on MATLAB language: a review [J]. Bulletin of Science and Technology, 2003, 19(2):130-135.
[15]杨维, 李歧强. 粒子群优化算法综述[J]. 中国工程科学, 2004, 6(5):87-94. YANG Wei, LI Qiqiang. Overview of particle swarm optimization algorithm [J]. China Engineering Science, 2004, 6(5):87-94.
[16]纪震, 廖惠连, 吴青华. 粒子群算法及应用[M].北京:科学出版社, 2009.

相似文献/References:

[1]汪送,王瑛,李超.BP神经网络在航空机务人员本质安全程度评价中的应用[J].中国安全生产科学技术,2010,6(6):35.
[2]王悦,薛伟.基于BP神经网络的东北贮木场火灾危险等级评定[J].中国安全生产科学技术,2013,9(2):173.
 WANG Yue,XUE Wei.Evaluation of fire danger rating of northeast lumberyard based on BP neural network[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(8):173.
[3]孙赟,李明涛,姚晓晖.基于BP神经网络人群流量预测的实现[J].中国安全生产科学技术,2010,6(2):61.
 SUN Yun,LI Ming-tao,YAO Xiao-hui.Imphement of crowd flow prediction based on BP neural network[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2010,6(8):61.
[4]高宗军,付青,郑秋霞,等.BP和Elman神经网络在砂土液化预测中的研究[J].中国安全生产科学技术,2013,9(6):58.[doi:10.11731/j.issn.1673-193x.2013.06.011]
 GAO Zong jun,FU Qing,ZHENG Qiu xia,et al.Study on forecasting of sand liquefaction by using BP neural and Elamn neural networks[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(8):58.[doi:10.11731/j.issn.1673-193x.2013.06.011]
[5]易高翔,潘长城,郭建中,等.基于多源数据融合的石油罐区安全监控模型[J].中国安全生产科学技术,2014,10(3):90.[doi:10.11731/j.issn.1673-193x.2014.03.015]
 YI Gao xiang,PAN Chang cheng,GUO Jian zhong,et al.Study on safety monitoring model of petroleum tank farm based on multisource data fusion[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(8):90.[doi:10.11731/j.issn.1673-193x.2014.03.015]
[6]陈建宏,郑荣凯,陈 浩.基于PCA和BP神经网络边坡稳定性分析[J].中国安全生产科学技术,2014,10(5):142.[doi:10.11731/j.issn.1673-193x.2014.05.023]
 CHEN Jianhong,ZHENG Rongkai,CHEN Hao.Analysis on slope stability based on combination of PCA and BP neural network[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(8):142.[doi:10.11731/j.issn.1673-193x.2014.05.023]
[7]宋新明,居 勇,曾 鸣,等.基于神经网络的供电企业安全文化评价研究*[J].中国安全生产科学技术,2009,5(4):55.
 SONG Xin ming,JU Yong,ZENG Ming,et al.Research on the evaluation of power supply enterprises safety culture based on neural network[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2009,5(8):55.
[8]刘业娇,田志超,刘进才.BP神经网络在矿井本质安全程度评价中的应用[J].中国安全生产科学技术,2009,5(5):102.
 LIU Ye jiao,TIAN Zhi chao,LIU Jin cai.Application of BP neural network in the field of evaluation on intrinsical safety degree in mine[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2009,5(8):102.
[9]潘长城,王时彬,王如君,等.基于信息融合与GM的石油罐区安全监控预测模型[J].中国安全生产科学技术,2014,10(7):21.[doi:10.11731/j.issn.1673-193x.2014.07.004]
 PAN Chang-cheng,WANG Shi-bin,WANG Ru-jun,et al.Petroleum tank farm safety monitoring forecasting model based on information fusion and GM[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(8):21.[doi:10.11731/j.issn.1673-193x.2014.07.004]
[10]陈建宏,陈浩,郑荣凯,等.基于物元分析与PCA的部队汽车分队安全评价模型[J].中国安全生产科学技术,2014,10(7):180.[doi:10.11731/j.issn.1673-193x.2014.07.032]
 CHEN Jian-hong,CHEN Hao,ZHENG Rong-kai,et al.Safety assessment model for military vehicle units based on combination of matter element analysis and PCA[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(8):180.[doi:10.11731/j.issn.1673-193x.2014.07.032]

备注/Memo

备注/Memo:
国家自然基金项目(51574275);长江学者和创新团队发展计划项目(IRT_14R58)
更新日期/Last Update: 2017-09-11