|本期目录/Table of Contents|

[1]王永军,张晓明,张河猛,等.堆积状态下低品质煤临界自燃着火点测定与研究[J].中国安全生产科学技术,2017,13(5):10-14.[doi:10.11731/j.issn.1673-193x.2017.05.002]
 WANG Yongjun,ZHANG Xiaoming,ZHANG Hemeng,et al.Measurement and study on critical self-ignition temperature temperature of low-rank coal in piling state[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(5):10-14.[doi:10.11731/j.issn.1673-193x.2017.05.002]
点击复制

堆积状态下低品质煤临界自燃着火点测定与研究
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
13
期数:
2017年5期
页码:
10-14
栏目:
学术论著
出版日期:
2017-05-31

文章信息/Info

Title:
Measurement and study on critical self-ignition temperature temperature of low-rank coal in piling state
文章编号:
1673-193X(2017)-05-0010-06
作者:
王永军1张晓明2张河猛1王天3佐佐木久郎4
1. 辽宁工程技术大学 矿业学院,辽宁 阜新 123000;2.辽宁工程技术大学 工程与环境研究所,辽宁 葫芦岛 125000;3.内蒙古白音华海州露天煤矿有限公司,内蒙古 026209;4.九州大学 工学府,日本福冈 819-0385
Author(s):
WANG Yongjun1 ZHANG Xiaoming2 ZHANG Hemeng1 WANG Tian3 SASAKI Kyuro4
1. College of Mining Engineering, Liaoning Technical University, Fuxin Liaoning 123000, China; 2. Institute of Engineering and Environment, Liaoning Technical University, Huludao Liaoning 125000, China; 3. lnner Mongolia Baiyinhua Haizhou Opencast Coal Mine Co., Ltd., Xilingol League Inner Mongolia 026209, China; 4. Faculty of Engineering, Kyushu University, Fukuoka 819-0385, Japan
关键词:
临界自燃着火点热平衡理论低品质煤Frank-Kamenetskii 模型
Keywords:
critical self-ignition temperature heat balance theory low-rank coal Frank-Kamenetskii model
分类号:
X936
DOI:
10.11731/j.issn.1673-193x.2017.05.002
文献标志码:
A
摘要:
为了研究低品质煤炭堆积状态下内部自热理论,采用临界自燃着火点理论和Frank-Kamenetskii 模型研究了煤堆内部热产生与热散失平衡理论以及煤堆表面的换热现象;并应用设计研发的煤堆热扩散率及温度监测实验装置和测定方法来评估低品质煤样(褐煤以及亚烟煤)临界自燃温度。结果表明:煤样堆积状态下临界自燃着火点温度可通过实验室内测定分析不同体积网框在不同环境温度条件下自热曲线得出;同体积条件下,临界自燃着火点随着煤品质的升高而增加;在140 ℃ 环境条件下,1#,2# 和3# 煤样在快速升温的前20 min内,温度变化趋势相似;在60~65 ℃,3种煤样出现温度转折点,升温速率开始减缓;根据煤样临界自燃着火点温度结合F-K热发火边界条件理论得出的堆积体积与着火点耦合关系式可预测大体积煤样自燃倾向性及临界自燃温度。
Abstract:
In order to study the internal self-heating theory of low-rank coal in piling state, the theory of critical self-ignition temperature and the Frank-Kamenetskii model were applied to study the internal heat generation and heat dissipation balance theory in the coal pile and the phenomenon of heat transfer on the surface of coal pile. The self-developed experimental device and the measurement method on thermal diffusivity and temperature of coal pile were applied to evaluate the critical critical self-ignition temperature of low-rank coal samples (lignite and sub-bituminous coal) effectively. The results showed that the critical self-ignition temperature of coal samples in piling state could be obtained through the measurement and analysis on the self-heating curves of screen frames with different volume under different environmental temperatures in the laboratory. The critical critical self-ignition temperature increased with the improvement of coal rank under the same volume. When the environmental temperature was 140 ℃, the temperature change trends of 1#, 2# and 3# coal samples were similar in the first 20 minutes of rapid heating. When the environmental temperature was in the range of 60 ℃-65 ℃, the temperature turning point appeared for all the three coal samples, and the heating rate began to slow down. The spontaneous combustion tendency and critical self-ignition temperature of large volume coal samples could be predicted by the coupling relational expression between the piling volume and the ignition temperature, which was obtained according to the critical self-ignition temperature of coal samples combined with the Frank-Kamenetskii thermal ignition boundary conditions.

参考文献/References:

[1]Nordon P. Model for the self-heating reaction of coal and char[J]. Fuel, 1979,58(6): 456-464.
[2]贾海林,杜志峰,王健,等.煤氧化-热解进程的增失重阶段与动力学三因子分析[J].中国安全生产科学技术,2015,11(8):112-118. JIA Hailin,DU Zhifeng,WANG Jian,et al. Analysis on the weight increment and weight loss stage and the kinetic triplet during the oxidation-pyrolysis process of coal[J]. Journal of Safety Science and Technology, 2015,11(8):112-118.
[3]Moghtaderi B,Dlugogorski B Z,Kennedy E M. Effects of wind flow on self-heating characteristics of coal stockpiles[M]. 78(6). Trans IChem E, 2000,78(6): 445-453.
[4]Green U, Aizenshtat Z, Metzger L, Cohen H. Field and laboratory simulation study of hot spots in stockpiled bituminous coal[J]. Energy & Fuel,2012, 26(12): 7230-7235.
[5]Frank-Kamenetzkii D. Wrme- und stoffübertragung in der chemischen Kinetik[M]. Berlin German: Springer Verlag, 1959.
[6]Gray P,Lee P. Thermal explosion theory, in oxidation and combustion reviews[M]. Amsterdam: Elsevier. 1967.
[7]Beamish B,McLellan P,Endara H, al. Delaying spontaneous combustion of reactive coals through inhibition[A]. Naj Aziz.2013 Coal Operators' Conference[C]. Wollongong Australia: University of Wollongong, 2013:221-226.
[8]秦汝祥,庞文华,陶 远. TG实验条件对煤氧化燃烧特性的影响分析[J].中国安全生产科学技术,2014, 10(5):154-158. QIN Ruxiang,PANG Wenhua,TAO Yuan. Effect of TG experimental conditions on the oxidative combustion characteristics of coal[J]. Journal of Safety Science and Technology. 2014,10(5):154-158.
[9]Sasaki K,Sugai Y. Equivalent oxidation exposure-time for low temperature spontaneous combustion of coal-Heat Analysis and Thermodynamic Effects[M]. Croatia: InTech., 2011: 235-254.
[10]马威. 西庞煤矿复采工作面采空区浮煤自燃规律及防治技术研究[D]. 西安:西安科技大学, 2010.
[11]王德明,亓冠胜,戚绪尧,等. 煤实验最短自然发火期的快速测试[J]. 煤炭学报, 2014,39(11): 2239-2243. WANG Deming,QI Guansheng,QI Xurao,et al. Quick test method for the experimental period minimum of coal to spontaneous combustion[J]. Journal of China Coal Society, 2014,39(11): 2239-2243.
[12]张玉涛,李亚清,邓军,等. 煤炭自燃灾变过程突变特性研究[J]. 中国安全科学学报,2015,25 (1):78-84. ZHANG Yutao,LI Yaqing,DENG Jun,et al. Study on catastrophe characteristics of coal spontaneous combustion[J]. China Safety Science Journal, 2015, 25(1): 78-84.
[13]王永军,张晓明,张河猛,等. 低品质煤堆积状态下自燃特性研究[J]. 中国安全科学学报,2016, 26(10):53-58. WANG Yongjun,ZHANG Xiaoming,ZHANG Hemeng, et al. Study on spontaneous combustion of low-rank coal pile[J]. China Safety Science Journal, 2016,(10):53-58.
[14]ENGEL Y. Heat transfer: a practical approach [M]. New York: McGraw-Hill, 2003: 231-239.
[15]Wang Y,Zhang X,Sugai Y, et al. A study on preventing spontaneous combustion of residual coal in a coal mine Goaf[J]. Journal of Geological Research, 2015, 2015(1):1-8.
[16]邓军,赵婧昱,张嬿妮,等. 低变质程度煤二次氧化自燃特性试验[J]. 煤炭科学技术, 2016, 44(3):49-54. DENG Jun,ZHAO Jingyu,ZHANG Yanni, et al. Experiment on secondary oxidation spontaneous combustion characteristics of low metamorphic degree coal[J]. Coal Science and Technology, 2016,44(3):49-54.
[17]Ray S K, Panigrahi D C, Varma A K. An electro-chemical method for determining the susceptibility of Indian coals to spontaneous heating\[J\]. International Journal of Coal Geology, 2014, s128-129(3):68-80.
[18]文虎,徐精彩,李莉,等. 煤自燃的热量积聚过程及影响因素分析[J]. 煤炭学报,2003, 28(4):370-374. WEN Hu,XU Jingcai,LI Li, et al. Analysis of coal self-ignite heat accumulating process and its effect factor[J]. Journal of China Coal Society, 2003, 28(4):370-374.

相似文献/References:

备注/Memo

备注/Memo:
日本JSPS 重点项目(25303030)
更新日期/Last Update: 2017-06-09