|本期目录/Table of Contents|

[1]杨彪,李慧民,孟海,等.基于GM-ANN模型的建筑物沉降量变化趋势预测方法[J].中国安全生产科学技术,2016,12(10):149-153.[doi:10.11731/j.issn.1673-193x.2016.10.025]
 YANG Biao,LI Huimin,MENG Hai,et al.Prediction method on change trend of building settlement based on GM-ANN model[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(10):149-153.[doi:10.11731/j.issn.1673-193x.2016.10.025]
点击复制

基于GM-ANN模型的建筑物沉降量变化趋势预测方法
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
12
期数:
2016年10期
页码:
149-153
栏目:
现代职业安全卫生管理与技术
出版日期:
2016-10-30

文章信息/Info

Title:
Prediction method on change trend of building settlement based on GM-ANN model
作者:
杨彪1 李慧民2 孟海3 裴兴旺
(1.西安建筑科技大学 材料与矿资学院,西安 710055;2.西安建筑科技大学 土木工程学院,西安 710055; 3.中冶建筑研究总院有限公司,北京 100088)
Author(s):
YANG Biao1 LI Huimin2 MENG Hai3 PEI Xingwang2
1. College of Materials and Mineral Resources, Xi'an University of Architecture and Technology, Xi'an Shaanxi 710055, China; 2. College of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an Shaanxi 710055, China; 3.Central Research Institute of building and Construction Co., Ltd.,Bei Jing 100088
关键词:
建筑物 沉降观测 GM-ANN模型 Matlab仿真 安全预测
Keywords:
building settlement observation GM-ANN model Matlab simulation safety predictionpredication
分类号:
X947
DOI:
10.11731/j.issn.1673-193x.2016.10.025
文献标志码:
A
摘要:
建筑物沉降观测结束之后,为降低和预防因地基不均匀沉降等因素造成的不安全事故发生率,准确预测建筑物沉降量变化趋势已引起相关科研单位的重视。首先,将人工神经网络数据分析与灰色GM(1,1)模型相结合,提出GM-ANN预测模型。然后,结合工程实例验证模型对监测沉降危险点数据变化的准确性,形成Matlab拟合曲线和预测趋势图。最终,结果表明仅考虑时间因素,GM-ANN模型明显优于灰色GM(1,1)模型,可使预测精度提高将近三倍。因此,利用GM-ANN预测模型可以对建筑物安全性进行有效预测。
Abstract:
(1. College of Materials and Mineral Resources, Xi'an University of Architecture and Technology, Xi'an Shaanxi 710055, China; 2. College of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an Shaanxi 710055, China; 3.Central Research Institute of building and Construction Co., Ltd.,Bei Jing 100088)

参考文献/References:

[1]刘玉梅,姚敏,王井利,王欣.高层建筑物沉降观测及其数据分析[J].沈阳建筑工程学院学报(自然科学版),2003(4):279-282. LIU Yumei, YAO Min, WANG Jingli, WANG Xin.Settlement observation and data analysis of high rise buildings[J].Journal of Shenyang Institute of architecture and Engineering (Natural Science Edition), 2003(4):279-282.
[2]尚金光,张献州.高速铁路路基沉降观测分析与评估方法研究[J].路基工程,2011(15603):26-28,32.
[3]陈刚.建筑物沉降变形监测数据处理与预测方法研究[D].江西理工大学,2011.
[4]张永清.桥梁墩、台的沉降观测和沉降值的预测[J].西安公路交通大学学报,2001(1):61-63. ZHANG Yongqing. Settlement observation and settlement value of bridge piers [J]. Journal of Xi'an Highway University, 2001(1):61-63.
[5]尹珺.基于人工神经网络的高速公路软基沉降预测研究[D].国防科学技术大学,2006.
[6]熊莎.高层建筑物沉降预测及安全评价[D].长沙理工大学,2014.
[7]王富麒.改进BP算法的灰色神经网络模型在高铁沉降预测中的应用研究[D].江西理工大学,2013.
[8]钱程,李连基,周子东.基于GM-ANN组合模型的大坝变形监测数据分析方法[J].中国农村水利水电,2015(10):157-159,162. QIAN Cheng, LIi Lianji, ZHOU Zidong. Data analysis method of dam deformation monitoring based on GM-ANN combination model [J]. China Rural Water and Hydropower,2015(10):157-159,162.
[9]刘春艳,凌建春,寇林元,仇丽霞,武俊青.GA-BP神经网络与BP神经网络性能比较[J].中国卫生统计,2013(2):173-176,181. LIU Chunyan, LING Jianchun, KOU Linyuan, CHOU Lixia, WU Junqing.GA-BP neural network and BP neural network performance comparison [J]. Chinese Journal of Health Statistics, 2013(2):173-176,181.
[10]赵煜,李文龙,李自珍,马智慧.基于GM-ANN模型的生态足迹时间序列预测分析——以甘肃省为例[J].兰州大学学报(自然科学版),2012(3):83-89. ZHAO Yu, LI Wenlong, LI Zizhen, MA Zhihui. Prediction of ecological footprint time series based on GM-ANNmodel—a case study of Gansu province [J]. Journal of Lanzhou University (Natural Science Edition), 2012(3):83-89.
[11]XU Zongkai.The technical application of high-rise buildings settlement observation[J];Geomatics & Spatial Information Technology;2012-12.
[12]YANG W C, PENGL M, WANG L C. Method of ground settlement prediction in urban tunnel construction based on ARMA[C]. Geohunan International Conference. 2009:270-275.
[13]SHENG Z. Prediction of building settlement based on gray system theory and Its demonstrative analysis[J]. Journa of North China University of Technology Beijing China, 2006.
[14]童飞.基于BP神经网络的水上交通事故预测及Matlab实现[D].武汉理工大学,2005.
[15]王尚昆.混沌时间序列预测模型研究[D].安徽农业大学,2013.

相似文献/References:

[1]宫博,许开立,李德顺.基于属性识别模型的建筑物火灾危险性评价[J].中国安全生产科学技术,2012,8(5):76.
 GONG Bo,XU Kai li,LI De shun.Hazard assessment of building fire based on attribute recognition model[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2012,8(10):76.
[2]祝磊,彭建和,刘金龙.地铁车站深基坑建设对邻近建筑物安全的影响评估[J].中国安全生产科学技术,2015,11(12):85.[doi:10.11731/j.issn.1673-193x.2015.12.013]
 ZHU Lei,PENG Jian-he,LIU Jin-long.Evaluation on influence by construction of deep foundation pit in subway station to safety of adjacent buildings[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2015,11(10):85.[doi:10.11731/j.issn.1673-193x.2015.12.013]
[3]石杰红.建构筑物周边爆破施工安全控制距离及分析方法研究[J].中国安全生产科学技术,2016,12(11):125.[doi:10.11731/j.issn.1673-193x.2016.11.021]
 YU Li,LIU Zegong,SHEN Zhaowu,et al.Experimental study on explosion effect during single ignition of fuel air explosive[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(10):125.[doi:10.11731/j.issn.1673-193x.2016.11.021]

备注/Memo

备注/Memo:
国家自然科学基金项目( 51178386);住建部科技项目项目(2015-R3-003)
更新日期/Last Update: 2016-11-30