|本期目录/Table of Contents|

[1]王洪磊,王登科,姚邦华.不同机制条件下的煤层瓦斯流动方程研究[J].中国安全生产科学技术,2016,12(4):20-24.[doi:10.11731/j.issn.1673-193x.2016.04.004]
 WANG Honglei,WANG Dengke,YAO Banghua.Study on flow equation of coal seam gas under different mechanisms[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(4):20-24.[doi:10.11731/j.issn.1673-193x.2016.04.004]
点击复制

不同机制条件下的煤层瓦斯流动方程研究
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
12
期数:
2016年4期
页码:
20-24
栏目:
学术论著
出版日期:
2016-04-30

文章信息/Info

Title:
Study on flow equation of coal seam gas under different mechanisms
作者:
王洪磊12王登科123姚邦华12
(1. 河南理工大学 河南省瓦斯地质与瓦斯治理重点实验室-省部共建国家重点实验室培育基地, 河南 焦作 454000;
2. 河南理工大学 安全科学与工程学院,河南 焦作 454000;
3. 煤炭安全生产河南省协同创新中心,河南 焦作 454000)
Author(s):
WANG Honglei12 WANG Dengke123 YAO Banghua12
(1. State Key Laboratory Cultivation Base for Gas Geology and Gas Control, Henan Polytechnic University, Jiaozuo Henan 454000, China;
2. School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo Henan 454000, China;
3. Coal Production Safety Collaborative Innovation Center in Henan Province, Jiaozuo Henan 454000, China)
关键词:
煤层瓦斯瓦斯扩散瓦斯渗流Knudsen数流动机制
Keywords:
coal seam gas gas diffusion gas seepage Knudsen number flow mechanism
分类号:
X936
DOI:
10.11731/j.issn.1673-193x.2016.04.004
文献标志码:
A
摘要:
气体流动可分为连续流、滑流、过渡流、自由分子流,为研究不同流动机制下的煤层瓦斯流动规律,在充分考虑了不同扩散机制和滑移边界条件后,建立了适用于不同流动机制的煤层瓦斯流动方程,深入分析了视渗透率和达西渗透率的比值随Knudsen数的变化关系。研究结果表明:所提出的煤层瓦斯流动方程能准确描述包括达西流、滑流、自由分子流、过渡流在内的气体流动行为。瓦斯气体在煤层孔隙、裂隙中流动过程中浓度扩散和粘性流同时存在,当Kn<0.01时,粘性流起主导作用,瓦斯流动满足渗流方程;当Kn>10时,浓度扩散起主导作用,瓦斯流动符合扩散方程;在Kn的其他范围内,煤层孔隙裂隙中瓦斯流动以滑流、过渡流为主,在对之进行评价时应同时考虑扩散项和渗流项。研究结果可为揭示煤层瓦斯流动机理、提高煤层瓦斯抽采率和煤层气的产量预测准确度提供新方法和新途径。
Abstract:
The gas flow can be divided into continuous flow, slip flow, transition flow and free molecular flow. In order to investigate the flow laws of coal seam gas under different flow mechanisms, a flow equation of coal seam gas being suitable for different flow mechanisms was established with fully considering different diffusion mechanisms and slip boundary conditions, and the change relationship between the ratio of apparent permeability to Darcy permeability and Knudsen number was analyzed deeply. The results showed that the proposed equation can accurately describe the gas flow behaviors including Darcy flow, slip flow, free molecular flow and transition flow. In the flow process of gas in pores and cracks of coal seam, the concentration diffusion and viscous flow exist simultaneously. If Knudsen number is less than 0.01, the viscous flow plays a leading role, and the gas flow meets the seepage equation. If Knudsen number is larger than 10, the concentration diffusion plays a leading role, and the gas flow fits the diffusion equation. In other cases, the gas flow in pores and cracks of coal seam is mainly on slip flow and transition flow, and the diffusion term and seepage term should be taken into account simultaneously when conducting evaluation. It can provide new method and new way for uncovering the flow mechanism, improving the drainage rate and the prediction accuracy on output of coal seam gas.

参考文献/References:

[1]Javadpour F., Fisher D., Unsworth M. Nanoscale Gas Flow in Shale Gas Sediments[J]. Journal of Canadian Petroleum Technology, 2007,46(10): 55-61.
[2]PAN Zhejun, Connell Luke D., Camilleri Michael, et al. Effects of matrix moisture on gas diffusion and flow in coal[J]. Fuel, 2010,89(11): 3207-3217.
[3]刘彦伟, 张加琪, 刘明举, 等. 水分对不同变质程度煤粒瓦斯扩散系数的影响[J]. 中国安全生产科学技术, 2015,11(6): 12-17. LIU Yanwei, ZHANG Jiaqi, LIU Mingju, et al. Influence of miosture content on gas diffusion coeficient of coal particles with different metamorphic degree[J]. Journal of Safety Science and Technology, 2015,11(6): 12-17.
[4]董贺, 王佰顺, 李春亭. 穿层预抽钻孔倾角与煤层气抽采效果关系的研究[J]. 中国安全生产科学技术, 2015,11(2): 99-104. DONG He, WANG Baishun, LI Chunting. Study on relationship between angle of penetration boreholes for predrainage in coal seam and gas drainage effect[J]. Journal of Safety Science and Technology, 2015,11(2): 99-104.
[5]LIU Qingquan, CHENG Yuanping, WANG Haifeng, et al. Numerical assessment of the effect of equilibration time on coal permeability evolution characteristics[J]. Fuel, 2015,140: 81-89.
[6]PENG Yan, LIU Jishan, WEI Mingyao, et al. Why coal permeability changes under free swellings: New insights[J]. International Journal of Coal Geology, 2014,133(11): 35-46.
[7]Klinkenberg. The Permeability of Porous Media to Liquid and Gas[J]. API Driling and Production Practices, 1941(2): 200-213.
[8]WANG Dengke, WEI Jianping, FU Qichao, et al. Seepage law and permeability calculation of coal gas based on Klinkenberg effect[J]. Journal of Central South University, 2015,22(5): 1973-1978.
[9]Ali Beskok, Karniadakis George Em. A Model for Flows in Channels,Pipes, and Ducts at Micro and Nano Scales[J]. Microscale Thermophysical Engineering, 1999,85(3): 43-77.
[10]Ziarani Ali S., Aguilera Roberto. Knudsen’s Permeability Correction for Tight Porous Media[J]. Transport in Porous Media, 2012,91(1): 239-260.
[11]Civan Faruk. Effective Correlation of Apparent Gas Permeability in Tight Porous Media[J]. Transport in Porous Media, 2010,82(2): 375-384.
[12]GUO Chaohua, XU Jianchun, WU Keliu, et al. Study on gas flow through nano pores of shale gas reservoirs[J]. Fuel, 2015,143: 107-117.
[13]GUO Jingjing, ZHANG Liehui, WANG Haitao, et al. Pressure Transient Analysis for Multi-stage Fractured Horizontal Wells in Shale Gas Reservoirs[J]. Transport in Porous Media, 2012,93(3): 635-653.
[14]DENG Jia, ZHU Weiyao, QI Qian, et al. Study on the steady and transient pressure characteristics of shale gas reservoirs[J]. Journal of Natural Gas Science and Engineering, 2015,24: 210-216.
[15]R Byron, Stewart Warren E., Edwin N Lightfoot. Transport Phenomena[M]. New York: John Wiley & Sons Inc, 2002.
[16]ZHANG Wen-Ming, MENG Guang, WEI Xueyong. A review on slip models for gas microflows[J]. Microfluidics and Nanofluidics, 2012,13(6): 845-882.
[17]陈晋南. 传递过程原理[M]. 北京: 化学工业出版社, 2004: 47-48.
[18]GUO Jingjing, ZHANG Liehui, ZHU Qin. A quadruple-porosity model for transient production analysis of multiple-fractured horizontal wells in shale gas reservoirs[J]. Environmental Earth Sciences, 2015,73(10): 5917-5931.
[19]李子文, 林柏泉, 郝志勇, 等. 煤体孔径分布特征及其对瓦斯吸附的影响[J]. 中国矿业大学学报, 2013,42(6): 1047-1053. LI Ziwen, LIN Boquan, HAO Zhiyong, et al. Characteristics of pore size distribution of coal and its impacts on gas adsorption[J]. Journal of China Univesity of Mining & Technology, 2013,42(6): 1047-1053.
[20]戴林超, 聂百胜. 煤粒的微观孔隙结构特征实验研究[J]. 矿业安全与环保, 2013,40(4): 4-7. DAI Linchao, NIE Baisheng. Experimental research on structural characteristics of microscopic pores of coal particles[J]. Mining Safety & Environmental Protection, 2013,40(4): 4-7.
[21]薛光武, 刘鸿福, 要惠芳, 等. 韩城地区构造煤类型与孔隙特征[J]. 煤炭学报, 2011,36(11): 1845-1851. XUE Guangwu, LIU Hongfu, YAO Huifang, et al. The types of tectonic coals and pore characters in Hancheng[J]. Journal of China Coal Society, 2011,36(11): 1845-1851.
[22]Roy Subrata, Raju Reni, Chuang Helen F., et al. Modeling gas flow through microchannels and nanopores[J]. Journal of Applied Physics, 2003,104(8): 4870-4879.

相似文献/References:

备注/Memo

备注/Memo:
教育部“创新团队发展计划”项目(IRT1235);国家自然科学基金项目(51574112,51304072,51404100);教育部科学技术研究重点项目(213022A);河南理工大学博士基金项目(B050201);河南理工大学“步步高”大学生科技攀登计划基金 ( SA-2016-072 )
更新日期/Last Update: 2016-05-05