|本期目录/Table of Contents|

[1]邓红卫,罗黎明,李爽,等.动力扰动作用下充填体的力学响应研究[J].中国安全生产科学技术,2016,12(2):62-67.[doi:10.11731/j.issn.1673-193X.2016.02.011]
 DENG Hongwei,LUO Liming,LI Shuang,et al.Study on mechanical response of backfill under dynamic disturbance[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(2):62-67.[doi:10.11731/j.issn.1673-193X.2016.02.011]
点击复制

动力扰动作用下充填体的力学响应研究
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
12
期数:
2016年2期
页码:
62-67
栏目:
现代职业安全卫生管理与技术
出版日期:
2016-02-29

文章信息/Info

Title:
Study on mechanical response of backfill under dynamic disturbance
文章编号:
1673-193X(2016)-02-0062-06
作者:
邓红卫罗黎明李爽胡建华
中南大学 资源与安全工程学院, 湖南 长沙 410083
Author(s):
DENG Hongwei LUO Liming LI Shuang HU Jianhua
School of Resources and Safety Engineering, Central South University, Changsha Hunan 410083, China
关键词:
动力扰动充填体数值分析力学响应
Keywords:
dynamic disturbance backfill numerical simulation mechanical response
分类号:
X931
DOI:
10.11731/j.issn.1673-193X.2016.02.011
文献标志码:
A
摘要:
稳定的充填体是二步骤矿房回采的安全保障。在采矿动力作用下实现充填体的稳定性预测,是二步开采的安全控制关键。为了研究不同扰动幅值下充填体的动力响应规律,以某矿山工程为研究对象,采用Midas/GTS与FLAC3D数值模拟技术,建立了充填体动力稳定性分析的三维数值模型并进行了数值模拟分析。研究结果表明:动力扰动作用下,充填体暴露面的破坏区域由四周逐渐向中心扩展,并随着动力扰动幅值的增加,充填体暴露面破坏区域逐渐增大直至贯通破坏;充填体暴露面质点峰值振动速度随着动力扰动峰值的增加而增加,并得出了适用于该矿充填体暴露面振动峰值速度与动力扰动幅值之间的函数关系。距动力加载面越远,充填体内部质点峰值振动速度越小,且距动力加载面0~12 m处,质点峰值振动速度衰减较慢,从12~20 m质点峰值振动速度下降趋势最为明显。
Abstract:
The steady backfill is the safety assurance of the second step stope mining, and realizing the stability prediction of backfill under dynamic disturbance is the key of safety control on the second step mining. In order to obtain the dynamic response regularity of backfill under different disturbance amplitude, a three-dimensional numerical model on the dynamic stability analysis of backfill was established by using Midas/GTS and FLAC3D, and the numerical simulation analysis was carried out. The results showed that under the influence of dynamic disturbance, the destruction area of backfill exposed surface expands from surrounding to the centre gradually, and with the increase of dynamic disturbance amplitude, it increases gradually until the through destruction. The peak particle vibration velocity of backfill exposed surface increases with the increasing peak value of dynamic disturbance, and the applicable function relationship between the peak particle vibration velocity of backfill exposed surfaces and dynamic disturbance amplitude was obtained for the mine. The farther away from dynamic loading surface, the smaller the peak particle vibration velocity in backfill, and when the distance between the particle and dynamic loading surface is 0~12 m, the attenuation of peak particle vibration velocity is slower, while the distance is 12~20 m, the downward trend of peak particle vibration velocity is the most obvious.

参考文献/References:

[1]徐剑坤,朱亚飞,宋大钊,等.基于剪切梁理论的爆破扰动对巷道顶板稳定性影响研究[J].中国安全生产科学技术,2013,9(7):25-31. XU Jiankun,ZHU Yafei,SONG Dazhao,et al. Study on roadway roof stability disturbed by blasting based on shear beam theory[J]. Journal of Safety Science and Technology,2013,9(7):25-31.
[2]隋斌,朱维申,李树忱. 深部岩柱在动态扰动下力学响应的数值模拟[J]. 岩土力学,2009,30(8):2501-2505. SUI Bin,ZHU Weishen,LI Shuchen. Simulation of mechanical response of deep rock pillar triggered by dynamic disturbance[J]. Rock and Soil Mechanics,2009,30(8):2501-2505.
[3]左宇军,唐春安,朱万成,等.深部岩巷在动力扰动下的破坏机理分析[J].煤炭学报,2006,31(6):742-746. ZUO Yujun,TANG Chunan,ZHU Wancheng,et al. Mechanism analysis on failure of deep rock laneway under dynamic disturbance[J]. Journal of China Coal Society,2006,31(6):742-746.
[4]周子龙,李国楠,宁树理,等. 侧向扰动下高应力岩石的声发射特性与破坏机制[J]. 岩石力学与工程学报,2014,34(8):1720-1728. ZHOU Zilong,LI Guonan,NING Shuli,et al. Acoustic emission characteristics and failure mechanism of high-strssed rocks under lateral disturbance [J]. Chinese Journal of Rock Mechanics and Engineering,2014,34(8):1720-1728.
[5]魏明尧,王恩元,刘晓斐,等. 动力扰动诱发顶板断裂的数值模拟分析[J].采矿与安全工程学报,2010,27(4) :533-536. WEI Mingyao,WANG Enyuan,LIU Xiaofei,et al. Numerical Simulation of Roof Fracture Induced by Dynamic Disturbance[J]. Journal of Mining & Safety Engineering,2010,27(4) :533-536.
[6]唐礼忠,高龙华,王春,等. 动力扰动下含软弱夹层巷道围岩力学响应特性[J].科技导报,2014,32(21):56-61. TANG Lizhong,GAO Longhua,WANG Chun,et al. Mechanical response features of roadway surrounding rock with weak interlayer under dynamic disturbance[J]. Science and Technology Review,2014,32(21):56-61.
[7]李夕兵,李地元,郭雷,等. 动力扰动下深部高应力矿柱力学响应研究[J].岩石力学与工程学报 2007,26(5):922-928. LI Xibing,LI Diyuan,GUO Lei. Study on mechanical response of highly-stressed pillars in deep mining under dynamic disturbance [J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(5):922-928.
[8]Zhu W C,Tang C A. Numerical simulation of Brazilian disk rock failure under static and dynamic loading[J]. International Journal Rock Mechanics and Mining Sciences, 2006, 43(2):236-252.
[9]李夕兵,廖九波,赵国彦,等. 动力扰动下高应力巷道围岩动态响应规律[J].科技导报,2012,30(22):48-54. LI Xibing,LIAO Jiubo,ZHAO Guoyan,et al. Dynamic response of surrounding rock in highly-stressed tunnel under dynamic disturbance [J]. Science and Technology Review,2012,30(22):48-54.
[10]温颖远,牟宗龙,易恩兵,等.动力扰动下不同硬度煤层巷道围岩响应特征研究[J].采矿与安全工程学报,2013,30(4):555-559. WEN Yingyuan,MU Zonglong,YI Enbing,et al. The response features of roadway surrounding rock in different hardness coal seams under dynamic disturbance [J]. Journal of Mining & Safety Engineering, 2013,30(4):555-559.
[11]唐礼忠,周建雄,张君,等. 动力扰动下深部采空区围岩力学响应及充填作用效果[J].成都理工大学学报(自然科学版),2012,39(6):623-628. TANG Lizhong,ZHOU Jianxiong,ZHANG Jun ,et al. Mechanical response of deep stoped-out areas and filling effect under dynamic disturbance[J]. Journal of Chengdu University of Technology(Science & Technology Edition) ,2012,39(6):623-628.
[12]张玉成,杨光华,刘鹏,等.爆破荷载在数值计算中的等效施加方法研究[J]. 地下空间与工程学报,2012,8(1):56-64. ZHANG Yucheng,YANG Guanghua,LIU Peng,et al. An equivalent approach for acting blasting load in dynamic numerical simulation of blasting vibration[J]. Chinese Journal of Underground Space and Engineering, 2012,8(1):56-64.
[13]林国洪.基于ANSYS和GeoStudio耦合的充填体底板稳定性分级[J]. 有色金属科学与工程,2014(3):91-95. LIN Guohong.Stability classification of filling body’s base plate based on ANSYS and GeoStudio coupling[J]. Nonferrous Metals Science and Engineering, 2014(3):91-95.
[14]胡建华,雷涛,周科平,等.充填环境下预裂缝的爆破动力响应分析[J]. 中南大学学报(自然科学版), 2011(6):1704-1709. HU Jianhua,LEI Tao,ZHOU Keping,et al. Effect of blasting vibration on pre-splitting crack in filling-environment[J]. Journal of Central South University, 2011(6):1704-1709.
[15]曹安业.采动煤岩冲击破裂的震动效应及其应用研究[D].徐州:中国矿业大学矿业工程学院,2009.

相似文献/References:

[1]孙琦,李喜林,卫星,等.硫酸盐腐蚀作用下膏体充填材料蠕变特性研究[J].中国安全生产科学技术,2015,11(3):12.[doi:10.11731/j.issn.1673-193x.2015.03.002]
 SUN Qi,LI Xi-lin,WEI Xing,et al.Study on creep property of paste filling materials under sulfate corrosion[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2015,11(2):12.[doi:10.11731/j.issn.1673-193x.2015.03.002]
[2]王明旭,许梦国,陈郑亮.剥落型矿柱与早强胶结充填体相互作用损伤演化分[J].中国安全生产科学技术,2017,13(3):69.[doi:10.11731/j.issn.1673-193x.2017.03.011]
 WANG Mingxu,XU Mengguo,CHEN Zhengliang.Analysis on interaction between spalling type pillar and early strength cement filling body and damage evolution[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(2):69.[doi:10.11731/j.issn.1673-193x.2017.03.011]
[3]王明旭,程爱平,刘晓云.早强充填体与矿柱相互作用的声发射特征试验研究[J].中国安全生产科学技术,2017,13(4):10.[doi:10.11731/j.issn.1673-193x.2017.04.002]
 WANG Mingxu,CHENG Aiping,LIU Xiaoyun.Experimental study on acoustic emission characteristics of interaction between early strength filling body and pillar[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(2):10.[doi:10.11731/j.issn.1673-193x.2017.04.002]
[4]张寅,尹立冬,张季平,等.动力扰动下高应力巷道钻孔消能机制的数值研究*[J].中国安全生产科学技术,2023,19(9):61.[doi:10.11731/j.issn.1673-193x.2023.09.009]
 ZHANG Yin,YIN Lidong,ZHANG Jiping,et al.Numerical study on energy dissipation mechanism of high stress tunnel borehole under dynamic disturbance[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2023,19(2):61.[doi:10.11731/j.issn.1673-193x.2023.09.009]

备注/Memo

备注/Memo:
国家“十二五”科技支撑计划项目(2012BAB14B01);国家自然科学基金项目(51274253)
更新日期/Last Update: 2016-03-11