|本期目录/Table of Contents|

[1]蔡峰,刘泽功.水不耦合装药对深孔预裂爆破应力波能量的影响[J].中国安全生产科学技术,2014,10(8):16-21.[doi:10.11731/j.issn.1673-193x.2014.08.003]
 CAI Feng,LIU Ze-gong,Impact of water decoupling charging on the energy of stress waves generated by blast in the process of deep-hole presplit blast in coal-bed[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(8):16-21.[doi:10.11731/j.issn.1673-193x.2014.08.003]
点击复制

水不耦合装药对深孔预裂爆破应力波能量的影响
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
10
期数:
2014年8期
页码:
16-21
栏目:
学术论著
出版日期:
2014-08-31

文章信息/Info

Title:
Impact of water decoupling charging on the energy of stress waves generated by blast in the process of deep-hole presplit blast in coal-bed
作者:
蔡峰123刘泽功123
(1 煤矿安全高效开采省部共建教育部重点实验室 安徽理工大学,安徽 淮南 232001; 2安徽理工大学 能源与安全学院,安徽 淮南 232001; 3煤与瓦斯共采安徽省重点实验室,安徽 淮南 232001)
Author(s):
CAI Feng123 LIU Ze-gong1 23
(1.Key Laboratory of Integrated Coal Exploitation and Gas Extraction of Anhui Province of Anhui University of Science and Technology,  Huainan 232001, China; 2.School of Resource and Safety of Anhui University of Science and Technology, Huainan Anhui  232001, China; 3.Key Lab of Mining Coal Safety and Efficiently Mining Constructed by Anhui Province and Ministry of Education,  Huainan Anhui 232001, China)
关键词:
水不耦合装药应力波能量信噪比 深孔预裂爆破
Keywords:
water decoupling stress wave energy noisesignal ratio
分类号:
X936
DOI:
10.11731/j.issn.1673-193x.2014.08.003
文献标志码:
A
摘要:
从理论上探讨了在深孔预裂爆破过程中,水不耦合装药对爆轰冲击波的形成和应力波传播规律的影响,利用Matlab编程求解了冲击波初始参数和沿爆破孔径向方向上传播到爆破孔孔壁处的参数;并根据弹性理论提出并求解了正入射情况下爆破孔孔壁表面上的初始冲击压力。在淮南矿业集团丁集矿进行了水不耦合装药深孔预裂爆破实验,并对实验获得的应力波信号进行归一化频谱分析研究。数值计算和现场实验均表明:通过在煤层中进行深孔预裂爆破实验研究发现,当ξ的值为1.5左右时,爆生应力波在10~50Hz内的分能量最强,同时具有最高的信噪比,这与理论计算结果相吻合。因而,在利用煤层爆破强化增透技术时应将不耦合装药系数设计为1.5左右,同时适当加大爆破药柱的用量,以获得最佳的增透效果。
Abstract:
The impacts of water decoupling charging on the generation and propagation rules of blastgenerated shock waves in the process of deephole presplitting blast in coalbed were theoretically discussed in this paper. Taking advantage of Matlab coding method, the initial parameters of shock waves and the parameters of shock waves when they propagated at the wall of blasting hole along the radial direction of blasting hole were solved. And according to elastic theory, the initial shock pressure on the surface of the wall of blasting hole under the condition of normal incidence was proposed and solved. Onsite deephole blast experiments with water decoupling charging were conduct at Dingji Coal Mine of Huainan Mining Group, and the normalized spectral analysis was conducted on experimental stress wave singals. Both onsite experiments and theoretical calculations showed that: the total stress wave energy decreased with the increase of ξ; when ξ equalled to 1.5, the stress waves had the largest lowfrequency energy component and the highest noisesignal ratio in 1050Hz frequency band. So, in the practice of increasing permeability of coalbed using deephole presplitting blast technology, the coupling coefficient ξ should be designed as 1.5, to acquire the best effect of increasing permeability.

参考文献/References:

[1]蔡峰,刘泽功.高瓦斯低透气性煤层深孔预裂爆破增透数值模拟分析[J].煤炭学报,2007,32(5):499-503 CAI Feng, LIU Ze-gong. Numerical simulation of improving permeability by deephole presplitting explosion in loosesoft and low permeability coal seam[J]. Journal of China Coal Society, 2007, 32(5):499-503
[2]刘健,刘泽功,石必明.低透气性突出煤层巷道快速掘进的试验研究[J].煤炭学报,2007,32(8):827-831 LIU Jian, LIU Ze-gong, SHI Bi-ming. Study on the roadway excavation rapidly in the low permeability outburst coal seam[J]. Journal of China Coal Society, 2007, 32(8):827-831
[3]李笑天,何树延.冲击作用下水力驱动装置流固耦合动力学[J].清华大学学报(自然科学版),2004,44(3):338-341 LI Xiao-tian, HE Shu-ting. Fluidsolid coupling dynamics of a hydraulic drive with an impact load[J]. Journal of Tsinghua University(Science and Technology), 2004, 44(3):338-341
[4]杨仁树,牛学超,商厚胜,等.爆炸应力波作用下层理介质断裂的动焦散实验分析[J].煤炭学报,2005,30(1):36-39 YANG Ren-shu, NIU Xue-chao, SHANG Housheng, et al. Dynamic caustics analysis of crack in samdwich materials under blasting stress wave[J]. Journal of China Coal Society, 2005, 30(1):36-39
[5]劳俊,肖卫国,王肖钧,等.地下空腔解耦爆炸的数值模拟[J].爆炸与冲击,2009(5):535-541 LAO Jun, XIAO Wei-guo, WANG Xiao-jun, et al. Numerical simulation on underground cavitydecoupling explosion[J]. Explosion and Shock Waves, 2009(5):535-541
[6]李清,王汉军,杨仁树.多孔台阶爆破破裂过程的模型试验研究[J].煤炭学报,2005,30(5):576-579 LI Qing, WANG Han-jun, YANG Ren-shu. Experimental investigation on fracture process of multihole bench blasting[J]. Journal of China Coal Society, 2005, 30(5):576-579
[7]Lu Yong, Wang Zhongqi, Chong K. A comparative study of buried structures in soil subjected to blast load using 2D and 3D numerical simulations[J]. Soil dynamics and earthquake engineering, 2005, 25(4):275-288
[8]Kubota S, Nagayama K, Saburi T, et al. State relations for a twophase mixture of reacting explosives and applications[J]. Combustion and flame, 2007, 151:74-84
[9]龚敏,黄毅华,王德胜.松软煤层深孔预裂爆破力学特性的数值分析[J].岩石力学与工程学报,2008,27(8):1674-1681GONG Min, HUANG Yi-hua, WANG De-sheng. Numerical simulation on mechanical characteristics of deephole presplitting blasting in soft coal bed[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(8):1674-1681
[10]李洪涛,卢文波,舒大强,等.基于功率谱的爆破地震能量分析方法[J].爆炸与冲击,2009,29(5):491-495 LI Hong-tao, LU Wen-bo, SHU Da-qiang, et al. An energy analysis method for blastinduced seismic based on power spectrum[J]. Explosion and Shock Waves, 2009, 29(5):491-495
[11]钟明寿,龙源,谢全民.装药不耦合系数对碳酸盐岩爆炸地震波能量的影响[J]. 爆炸与冲击,2011,31(6):612-618 ZHONG Ming-shou, LONG Yuan, XIE Quan-min, et al. Effects of noncoupling charge coefficients on explosion seismic wave energy in carbonate rocks[J]. Explosion and Shock Waves, 2011, 31(6):612-618

相似文献/References:

[1]朱飞昊,刘泽功,刘健,等.松软煤层水不耦合装药预裂爆破的力学特性数值分析[J].中国安全生产科学技术,2018,14(5):124.[doi:10.11731/j.issn.1673-193x.2018.05.018]
 ZHU Feihao,LIU Zegong,LIU Jian,et al.Numerical analysis on mechanical properties of presplitting blasting with water uncoupled charge in soft coal seam[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(8):124.[doi:10.11731/j.issn.1673-193x.2018.05.018]

备注/Memo

备注/Memo:
国家自然科学基金项目(51304006);安徽省自然科学基金项目(1408085QE87);安徽省高等学校自然科学研究项目(KJ2013A102);安徽理工大学青年骨干基金项目(2012012)
更新日期/Last Update: 2014-09-26