|本期目录/Table of Contents|

[1]刘 畅,覃 敏,彭 云.大面积顶板失稳诱发空气冲击波灾害时程特性研究[J].中国安全生产科学技术,2014,10(5):49-55.[doi:10.11731/j.issn.1673-193x.2014.05.008]
 LIU Chang,QIN Mi,PENG Yun.Study on time-history characteristics of air blast wave due to great extent of roof instability[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(5):49-55.[doi:10.11731/j.issn.1673-193x.2014.05.008]
点击复制

大面积顶板失稳诱发空气冲击波灾害时程特性研究
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
10
期数:
2014年5期
页码:
49-55
栏目:
学术论著
出版日期:
2014-05-31

文章信息/Info

Title:
Study on time-history characteristics of air blast wave due to great extent of roof instability
文章编号:
20140508
作者:
刘 畅12覃 敏12彭 云3
(1.长沙矿山研究院有限责任公司,湖南 长沙 410012;
2.金属矿山安全技术国家重点实验室,湖南 长沙 410012;
3.化工部长沙设计研究院,湖南 长沙 410116)
Author(s):
LIU Chang12 QIN Mi12 PENG Yun3
(1.Changsha Institute of Mining Research, Co., Ltd, Changsha Hunan 410012, China;
2.State Key Laboratory of Safety Technology of Metal Mines, Changsha Hunan 410012, China;
3.Changsha Design and Research Institute of Chemical Industry Ministry,
关键词:
顶板冒落空气冲击波时程特性冲击速度冲击能量
Keywords:
roof falling air blast wave timehistory characteristics shock velocity impact energy
分类号:
X936
DOI:
10.11731/j.issn.1673-193x.2014.05.008
文献标志码:
A
摘要:
采空区大面积顶板冒落可在瞬间产生破坏力极强的空气冲击波。介绍了空气冲击波的形成及危害形式,指出了传统冲击模型的缺陷,通过建立新的冲击模型,深入分析了空气冲击波从形成到消亡过程中的速度和能量变化特征,结合香炉山钨矿大面积采空区的实际情况,选取典型参数进行分析计算,结果表明:空气冲击波速度与冒落块体尺寸,顶板冒落的高度,可供逸出气体巷道的总断面积,巷道的通风阻力等因素有关;下落块体受压缩空气阻力作用,下降时间略微增加,整个冒落过程持续时间为289s,当下落时间为21s时,风速达到极值,为5081m/s,冲击影响范围在距离事发空区的370m以内; 块体下落的起始阶段受空气阻力较小,飓风速度急剧升高,下降中间阶段,飓风速度先是缓慢爬升,然后达到峰值,块体下降的后期受空气阻力作用最为明显,风速急剧下降,巷道内飓风流迅速趋于平缓;建议对香炉山钨矿采空区尽快实施充填,并采取疏堵结合、设置缓冲垫层、加强地压活动监测等措施降低冲击危险,减小冲击危害。
Abstract:
Air blast wave caused by great extent of roof in worked-out area can bring about a great destruction. The formation and damaging forms of impact waves were introduced. And the defects of traditional model were pointed out. In order to make a further research on the timehistory characteristics of waves speed and energy during the process from generation to disappearance, a new model was established. Then the typical parameters coming from the worked-out area of Xianglushan tungsten ore were used for calculation and analysis. And the results showed that: (1) shock velocity is closely related to falling height, size of rock block, sectional area of roadways and ventilation resistance, et, al; (2) under the action of aerodynamic drag, the falling time of the rock block has a little increase and the whole catastrophic process continues for 2.89s. The wind speed reaches their extreme points as 508.1m/s after 2.1s, and the shock could reach 370m around the site of the incident; (3) because of minor resistance at the primary step of falling, the speed of hurricane increases drastically. At intermediate stage, the wind speed climbs slowly and gradually arrives the peak. Due to tremendous resistance in the terminal stage, the speed of hurricane decreases sharply and airflow becomes flat in the lane. (4) an implementation of filling must be put into practice as soon as possible, some measures such as grooming, plugging, setting buffer layer, ground pressure monitoring and so on, should be taken to reduce the ratio of accident and harm of air blast wave.

参考文献/References:

[1]李文.房采采空区失稳危险性评价[J].中国安全科学学报,2011,21(3):95-100 LI Wen. Risk assessment of room method goafs instability[J]. China Safety Science Journal,2011,21(3):95-100
[2]顾铁凤.采场飓风冲击灾害分析[J].辽宁工程技术大学学报(自然科学版),2007,26(1):11-14 GU Tie-feng. Analysis of hurricane impact disaster in mining faces[J]. Journal of Liaoning Technical University(Natural Science Edition),2007,21(3):95-100
[3]吴爱祥,王贻明,胡国斌.采空区顶板大面积冒落的空气冲击波[J].中国矿业大学学报,2007,36(4):473-477 WU Ai-xiang, WANG Yi-ming, HU Guo-bin. Air shock wave induced by roof falling in a large scale in ultra-hugem ined-area[J]. Journal of China University of Mining & Technology ,2007,36(4):473-477
[4]郑怀昌,宋存义,胡龙,等.采空区顶板大面积冒落诱发冲击气浪模拟[J].北京科技大学学报,2010,32(3):277-281 ZHENG Huai-chang, SONG Cun-yi, HU Long, et al. Simulation of air shock waves induced by roof caving in huge mined out area[J].Journal of University of Science and Technology Beijing,2010,32(3):277-281
[5]刘晶波,闫秋实,伍俊,等.坑道内爆炸冲击波传播规律的研究[J].振动与冲击,2009,28(6):8-11 LIU Jing-bo, YAN Qiu-shi, WU Jun, et al. Analysis of blast wave propgation inside tunnels[J].Journal of Vibration and Shock,2009,28(6):8-11
[6]吴爱军,蒋承林.煤与瓦斯突出冲击波传播规律研究[J].中国矿业大学学报,2011,40(6):852-857 WU Ai-jun, JIANG Cheng-lin. Research on the propagation of shock waves from coal and gas outburst[J].Journal of China University of Mining & Technology,2011,40(6):852-857
[7]庞伟宾,何翔,李茂生.空气冲击波在坑道内走时规律的实验研究[J].爆炸与冲击,2003,23(67):573-576 PANG Wei-bin, HE Xiang, LI Mao-sheng. The formula for airblast time of arrival in tunnel[J]. Explosion and Shock Waves,2003,23(67):573-576
[8]张也影.流体力学[M].北京:高等教育出版社,1998
[9]刑平伟,付玉平,李志军,等.采场顶板飓风耦合模型及采高对飓风灾害的影响[J].中北大学学报(自然科学版),2010,31(3):227-231 XIN Wei-ping, FU Yu-ping, LI Zhi-jun, et al. Coupling model of stope roof with hurricane disaster and the influence analysis of mining height on hurricane velocity[J].Journal of North University of China(Natural Science Edition) ,2010,31(3):227-231
[10]顾铁凤,宋选民.封闭采空区顶板垮落—空气冲击耦合模型与差分解法[J].煤炭学报,2008,33(11):1211-1215 GU Tie-feng, SONG Xuan-min. The air impulsion coupling model with roof caving and its difference solution under closed goaf[J].Journal of China Coal Society,2008,33(11):1211-1215
[11]刘畅.基于房柱法开采的缓倾斜大面积空区群稳定性研究[D].长沙矿山研究院,2013
[12]GB 6722-2011.爆破安全规程[S].2011
[13]覃敏,唐绍辉,徐必根.阿舍勒铜矿地压灾害微震监测预测预报研究[J].矿业研究与开发,2013,33(3):1-6 QIN Min, TANG Shao-hui, XU Bi-gen. Research on prediction of ground pressure disaster based on microseismic monitoring in Ashele copper mine[J]. Mining Research and Development, 2013, 33(3):1-6

相似文献/References:

备注/Memo

备注/Memo:
湖南省科技重大专项(2011FJ1003)
更新日期/Last Update: 2014-05-31