|本期目录/Table of Contents|

[1]龚晓燕,翟项华,陈龙,等.快掘面抽风口集尘参数变化下粉尘场优化模型研究*[J].中国安全生产科学技术,2024,20(3):90-96.[doi:10.11731/j.issn.1673-193x.2024.03.013]
 GONG Xiaoyan,ZHAI Xianghua,CHEN Long,et al.Study on dust field optimization model under change of dust collecting parameters of exhaust outlet at fast-tunneling face[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2024,20(3):90-96.[doi:10.11731/j.issn.1673-193x.2024.03.013]
点击复制

快掘面抽风口集尘参数变化下粉尘场优化模型研究*
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
20
期数:
2024年3期
页码:
90-96
栏目:
职业安全卫生管理与技术
出版日期:
2024-03-31

文章信息/Info

Title:
Study on dust field optimization model under change of dust collecting parameters of exhaust outlet at fast-tunneling face
文章编号:
1673-193X(2024)-03-0090-07
作者:
龚晓燕翟项华陈龙孙海鑫付浩然张红兵康哲
(西安科技大学 机械工程学院,陕西 西安 710054)
Author(s):
GONG Xiaoyan ZHAI Xianghua CHEN Long SUN Haixin FU Haoran ZHANG Hongbing KANG Zhe
(College of Mechanical Engineering,Xi’an University of Science and Technology,Xi’an Shaanxi 710054,China)
关键词:
快掘面集尘口二次回归正交双目标优化模型
Keywords:
fast-tunneling face dust collecting port quadratic regression orthogonal dual-objective optimization model
分类号:
X936
DOI:
10.11731/j.issn.1673-193x.2024.03.013
文献标志码:
A
摘要:
为了解决长压短抽通风方式下传统抽风口集尘效果不适应掘进速度快、产尘量大的工作面集尘需求等问题,提出设计抽风筒集尘口装置及系统布局,以降低快掘面高粉尘危害和污染等隐患。利用Fluent建立集尘系统的粉尘场有限元模型,分析单集尘参数对粉尘场影响并确定参数取值范围,设计二次回归正交试验,建立司机和人行道呼吸带粉尘质量浓度双目标优化模型,采用NSGA-Ⅱ算法求解模型。以陕西某矿快掘面为研究对象,求解得到该集尘布局下最佳集尘参数方案。搭建集尘系统试验平台来测试最佳集尘参数方案,研究结果表明:试验测试值和预测值误差小于8%,优化后的司机处粉尘质量浓度和人行道呼吸带平均粉尘质量浓度分别降低79.3%,58.7%,证明优化模型准确且有效。研究结果可为实现快掘面空气净化目标提供参考。
Abstract:
In order to solve the problem that the dust collection effect of traditional exhaust outlet under the ventilation mode of long pressing and short pumping is not suitable for the dust collection demand of the working face with fast driving speed and large dust production,the dust collection port device and system layout of the exhaust duct were proposed and designed to reduce the hazards of high dust and pollution at the fast-tunneling face.Fluent was used to establish the finite element model of dust field of the dust collection system,the influence of single dust collection parameter on the dust field was analyzed,and the value ranges of the parameters were determined.The quadratic regression orthogonal test was designed to establish a dual-objective optimization model of dust concentration of drivers and pavement respiratory zone,and the NSGA-Ⅱ algorithm was used to solve the model.Taking the fast-tunneling face of a mine in Shaanxi province as the research object,the optimal dust collecting parameter scheme under the dust collecting layout was obtained,and a dust collection system test platform was built to test the optimal dust collection parameter scheme.The research results show that the error between the test value and the predicted value is less than 8%,and the optimized dust mass concentration at the driver’s place and the average dust mass concentration at the pavement respiratory zone are reduced by 79.3% and 58.7%,respectively,which verified that the optimized model is accurate and effective.The research results can provide reference for realizing the goal of air purification in the fast-tunneling faces.

参考文献/References:

[1]高奎英,冯志忠.神东矿区成套智能化快速掘进系统过断层工艺研究[J].煤炭科学技术,2022,50(增刊2):38-43.GAO Kuiying,FENG Zhizhong.Study on fault crossing technology of complete intelligent rapid driving system in Shendong Mining area[J].Coal Science and Technology,2022,50(Supplement 2):38-43.
[2]王康.快速掘进工作面粉尘分布规律及综合防治技术研究[D].西安:西安科技大学,2021.
[3]ZHOU G,DUAN J,SUN B,et al.Numerical analysis on pollution law for dust and diesel exhaust particles in multi-ventilation parameter environment of mechanized excavation face[J].Process Safety and Environmental Protection,2022,157:320-333.
[4]NIE W,JIANG C,SUN N,et al.Analysis of multi-factor ventilation parameters for reducing energy air pollution in coal mines[J].Energy,2023,278:127732.
[5]刘荣华,朱必勇,王鹏飞,等.综掘工作面双径向旋流屏蔽通风控尘机理[J].煤炭学报,2021,46(12):3902-3911.LIU Ronghua,ZHU Biyong,WANG Pengfei,et al.Risk control mechanism of dual radial swirling flow shield on integrated excavation face[J].Journal of China Coal Society,2021,46(12):3902-3911.
[6]龚晓燕,樊江江,刘壮壮,等.综掘面出风口及抽风口风流综合调控下粉尘场优化分析[J].煤炭学报,2021,46(增刊2):800-809.GONG Xiaoyan,FAN Jiangjiang,LIU Zhuangzhuang,et al.Optimization analysis of dust field under the comprehensive control of the air outlet and air outlet of the excavation face[J].Journal of China Coal Society,2021,46(Supplement 2):800-809.
[7]李雨成,郑强,罗红波,等.掘进工作面可调控双锥形一体化泡沫降尘装置的实验研究[J].中国安全生产科学技术,2017,13(9):121-125.LI Yucheng,ZHENG Qiang,LUO Hongbo,et al.Experimental study on Bi-conical integrated foam dust removal device with adjustable driving face[J].Jornal of Safety Science and Technology,2017,13(9):121-125.
[8]席义苗,李军,张兆,等.大断面快掘工作面机载除尘系统的设计与应用[J].现代矿业,2022,38(12):226-228,235.XI Yimiao,LI Jun,ZHANG Zhao,et al.Design and application of airborne dust removal system for large section quick excavation face[J].Modern Mining,2022,38(12):226-228,235.
[9]关万里,罗望,王钰,等.神东矿区现代化掘进工作面一体化高效除尘技术及装备[J].煤炭科学技术,2022,50(增刊1):147-151.GUAN Wanli,LUO Wang,WANG Yu,et al.Technology and equipment of integrated high-efficiency dust removal in modern driving face in Shendong Mine area[J].Coal Science and Technology,2022,50(Supplement 1):147-151.
[10]乔金林,孙连胜,王嘉.快速掘锚工作面控风除尘技术研究与应用[J].矿业安全与环保,2022,49(6):101-105.QIAO Jinlin,SUN Liansheng,WANG Jia.Research and application of wind control and dust removal technology in fast digging anchor face[J].Mining Safety & Environmental Protection,2022,49(6):101-105.
[11]杨华,齐世康,田亮,等.基于欧拉-拉格朗日方法的喷雾除尘效率影响因素数值模拟[J].矿业安全与环保,2023,50(1):42-46.YANG Hua,QI Shikang,TIAN Liang,et al.Numerical simulation of influencing factors of spray dust removal efficiency based on Euler-Lagrange method[J].Mining Safety & Environmental Protection,2023,50(1):42-46.
[12]JING D,JIA X,GE S,et al.Numerical simulation and experimental study of vortex blowing suction dust control in a coal yard with multiple dust production points[J].Powder Technology,2021,388(6): 554-565.
[13]李恒凡,焦世权,韩中合.基于二次回归正交试验的脱硫废水蒸发特性分析[J].动力工程学报,2021,41(1):57-65,78.LI Hengfan,JIAO Shiquan,HAN Zhonghe.Analysis of evaporation characteristics of desulfurization wastewater based on quadratic regression orthogonal test[J].Chinese Journal of Power Engineering,2021,41(1):57-65,78.
[14]彭珍,刘春元,饶章宇,等.NSGA-Ⅱ应用于圆筒型永磁直线电机的多目标优化[J].计算机时代,2023(1):21-25.PENG Zhen,LIU Chunyuan,RAO Zhangyu,et al.NSGA-Ⅱ application to multi-objective optimization of cylindrical permanent magnet linear motor[J].Computer Era,2023(1):21-25.
[15]龚晓燕,侯翼杰,赵宽,等.综掘工作面风筒出风口风流智能调控装置研究[J].煤炭科学技术,2018,46(12):8-14.GONG Xiaoyan,HOU Yijie,ZHAO Kuan,et al.Research on intelligent control device of air flow in air duct outlet of excavating face[J].Coal Science and Technology,2018,46(12):8-14.
[16]龚晓燕,雷可凡,吴群英,等.数字孪生驱动的掘进工作面出风口风流智能调控系统[J].煤炭学报,2021,46(4):1331-1340.GONG Xiaoyan,LEI Kefan,WU Qunying,et al.Intelligent control system of air flow of outlet driven by digital twin in driving face[J].Journal of China Coal Society,2021,46(4):1331-1340.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期: 2023-09-26
* 基金项目: 国家自然科学基金项目(52374226);陕西省自然科学基础研究计划-企业陕煤联合基金项目(2021JLM-01)
作者简介: 龚晓燕,博士,教授,主要研究方向为矿井通风安全。
更新日期/Last Update: 2024-04-07