|本期目录/Table of Contents|

[1]赵祥迪,张广文,郑毅,等.狭长通道内部丙烷气体爆炸冲击实验与模拟分析[J].中国安全生产科学技术,2024,20(3):40-45.[doi:10.11731/j.issn.1673-193x.2024.03.006]
 ZHAO Xiangdi,ZHANG Guangwen,ZHENG Yi,et al.Experimental and numerical analysis on propane gas explosion in narrow and long channel[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2024,20(3):40-45.[doi:10.11731/j.issn.1673-193x.2024.03.006]
点击复制

狭长通道内部丙烷气体爆炸冲击实验与模拟分析
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
20
期数:
2024年3期
页码:
40-45
栏目:
学术论著
出版日期:
2024-03-31

文章信息/Info

Title:
Experimental and numerical analysis on propane gas explosion in narrow and long channel
文章编号:
1673-193X(2024)-03-0040-06
作者:
赵祥迪张广文郑毅徐伟羊涛陈国鑫
(1.化学品安全全国重点实验室,山东 青岛 266071;
2.中石化安全工程研究院有限公司,山东 青岛 266071;
3.中国科学技术大学 火灾科学国家重点实验室,安徽 合肥 230026)
Author(s):
ZHAO Xiangdi ZHANG Guangwen ZHENG Yi XU Wei YANG Tao CHEN Guoxin
(1.State Key Laboratory of Chemical Safety,Qingdao Shandong 266071,China;
2.SINOPEC Research Institute of Safety Engineering Co.,Ltd.,Qingdao Shandong 266071,China;
3.State Key Laboratory of Fire Science,University of Science and Technology of China,Hefei Anhui 230026,China)
关键词:
狭长通道丙烷气体超压波峰泄放火焰
Keywords:
narrow and long channel propane gas overpressure peak venting flame
分类号:
X932;X937
DOI:
10.11731/j.issn.1673-193x.2024.03.006
文献标志码:
A
摘要:
为探究石化企业污水系统等狭长通道抗爆炸冲击特性,采用10 m×1.5 m×1.5 m (长×宽×高)全尺寸模型,对通道内丙烷气体泄漏燃爆压力、泄放火焰尺寸等冲击特性进行实验和模拟研究。研究结果表明:在长径比L/D为6的大长径比通道内,气体燃爆超压呈现出多波峰形态,其中P2波峰占超压波动的主导地位,尾端全开口泄放腔内最大超压达到97 kPa,高于L/D 在1~5范围内的已有文献报道;通道内爆炸超压峰值和泄放火焰尺寸等冲击特性受泄放开口率、燃料体积分数等因素影响,超压峰值随泄放口开度增加呈指数降低、随初始燃料配比浓度增加呈先减小后增加的抛物线趋势变化,泄放火焰最大长度高于标准NFPA 68—2018计算结果。本文构建的数值模型结果与实验吻合较好,研究结果可为相关石化企业狭长通道内油气爆炸后果评估及防火设计等提供一定参考。
Abstract:
In order to explore the anti-explosion impact characteristics of narrow and long channels such as sewage system in petrochemical enterprises,the experimental and numerical research on the impact characteristics of propane gas leakage and explosion pressure,venting flame size and so on in the channel were conducted by using a full-scale model of 10 m×1.5 m×1.5 m (length×width×height).The results show that in the channel with large length-diameter ratio of L/D=6,the gas explosion overpressure presents a multi-peak shape,in which the P2 peak dominates the overpressure fluctuation.The maximum overpressure in the full-opening venting chamber at the tail end reaches 97 kPa,which is higher than those reported in the literature with L/D in the range of 1~5.The impact characteristics such as explosion overpressure peak and venting flame size in the channel are affected by the factors such as venting outlet area and fuel volume concentration (referred to as concentration,the same below).The overpressure peak decreases exponentially with the increase of venting outlet opening,and changes in a parabolic trend with the increase of initial fuel ratio concentration.The maximum length of venting flame is higher than the calculation results of NFPA 68 standard.The results of numerical model constructed in this paper are in good agreement with the experimental results.The research results can provide some reference for the consequence assessment and fire protection design of oil and gas explosion in the narrow and long channels of related petrochemical enterprises.

参考文献/References:

[1]YANG H N,CHEN J H,CHIU H J,et al.Confined vapor explosion in Kaohsiung city-a detailed analysis of the tragedy in the harbor city [J].Journal of Loss Prevention in the Process Industries,2016,41:107-120.
[2]BAO Q,FANG Q,ZHANG Y D,et al.Effects of gas concentration and venting pressure on overpressure transients during vented explosion of methane-air mixtures [J].Fuel,2016,175:40-48.
[3]徐建楠,倪中华,陆飏,等.大长高比管道汽油-空气混合气爆炸与抑制实验研究[J].中国安全生产科学技术,2021,17(2):77-83.XU Jiannan,NI Zhonghua,LU Yang,et al.Experimental study on the explosion and suppression of gasoline-air mixture in large-length high-ratio pipeline[J].Journal of Safety Science and Technology,2021,17(2):77-83.
[4]吴婧斯,张培理,王冬,等.不同分支坑道分布形式及分布位置对油气爆炸超压特性的影响[J].爆炸与冲击,2021,41(11):158-167.WU Jingsi,ZHANG Peili,WANG Dong,et al.Influence of different branching pit distribution forms and distribution locations on the overpressure characteristics of oil and gas explosions[J].Explosion and Shock Waves,2021,41(11):158-167.
[5]ZHENG K,YU M G,ZHENG L G,et al.Effects of hydrogen addition on methane-air deflagration in obstructed chamber[J].Experimental Thermal and Fluid Science,2017,80:270-280.
[6]HOOKER P,HOYES J R,HALL J,et al.Experimental studies on vented deflagrations in a low strength enclosure[J].International Journal of Hydrogen Energy,2016,42:7565-7576.
[7]YANEZ J,KUZNETSOV M,GRUNE J.Flame instability of lean hydrogen-air mixtures in a smooth open-ended vertical channel[J].Combustion and Flame,2015,162(7):2830-2839.
[8]LI G C,PAN C Y,LIU Y P,et al.Evaluation of the effect of water mist on propane/air mixture deflagration:large-scale test[J].Process Safety and Environmental Protection,2021,147(1):1101-1109.
[9]ZHANG C S,DONG H G,SHANG S,et al.Experimental investigation of the vented propane-air explosion characteristics at elevated static activation pressures in a large L/D duct [J].Process Safety and Environmental Protection,2023,176:945-955.
[10]National Fire Protection Association.Standard on explosion protection by deflagration venting:NFPA 68—2018 [S].Quincy,USA:NFPA,2018.
[11]British Standards Institution.Gas explosion venting protective systems:BS EN 14994—2007 [S].London,UK:BSI,2007.
[12]ZHANG S H,MA H T,HUANG X M,et al.Numerical simulation on natural gas explosion and prevention measures design under water-gas compartment in utility tunnel [J].Tunnelling and Underground Space Technology,2022,130:104754.
[13]HISKEN H,ENSTAD G A,MIDDHA P,et al.Investigation of concentration effects on the flame acceleration in vented channels [J].Journal of Loss Prevention in the Process Industries,2015,36:447-59.
[14]CHOW S K,CLEAVER P,FAIRWEATHER M,et al.An experimental study of vented explosions in a 3:1 aspect ratio cylindrical vessel [J].Process Safety and Environmental Protection,2000,78(6):425-433.
[15]ZHANG C S,DONG H G,ZHOU Y,et al.Flame behavior and pressure characteristics of vented propane-air explosions [J].Journal of Loss Prevention in the Process Industries,2023,85:105168.
[16]CHAO J,BAUWENS C R,DOROFEEV S B.An analysis of peak overpressures in vented gaseous explosions [J].Proceedings of the Combustion Institute,2011,33(2):2367-2374.
[17]DIAKOW P A,THOMAS J K,PARSONS P J.Large-scale vented deflagration tests [J].Journal of Loss Prevention in the Process Industries,2017,50:121-130.
[18]DIAKOW P A,THOMAS J K,VIVANCO E,et al.Fireball and flame venting comparisons:test data,CFD simulations,and industry standard prediction [J].Journal of Loss Prevention in the Process Industries,2022,77:104794.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期: 2023-10-25
作者简介: 赵祥迪,硕士,正高级工程师,主要研究方向为危险化学品事故应急救援技术。
更新日期/Last Update: 2024-04-07