|本期目录/Table of Contents|

[1]陈现涛,张旭,赵一帆,等.不同外热功率下18650锂离子电池热失控特性*[J].中国安全生产科学技术,2021,17(9):139-144.[doi:10.11731/j.issn.1673-193x.2021.09.022]
 CHEN Xiantao,ZHANG Xu,ZHAO Yifan,et al.Thermal runaway characteristics of 18650 lithium-ion battery under different external thermal powers[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2021,17(9):139-144.[doi:10.11731/j.issn.1673-193x.2021.09.022]
点击复制

不同外热功率下18650锂离子电池热失控特性*
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
17
期数:
2021年9期
页码:
139-144
栏目:
职业安全卫生管理与技术
出版日期:
2021-09-30

文章信息/Info

Title:
Thermal runaway characteristics of 18650 lithium-ion battery under different external thermal powers
文章编号:
1673-193X(2021)-09-0139-06
作者:
陈现涛张旭赵一帆刘奕
( 中国民用航空飞行学院 民航安全工程学院,四川 广汉 618307 )
Author(s):
CHEN Xiantao ZHANG Xu ZHAO Yifan LIU Yi
(College of Civil Aviation Safety Engineering,Civil Aviation Flight University of China,Guanghan Sichuan 618307,China)
关键词:
外热功率锂离子电池热失控热危害毒危害
Keywords:
external thermal power lithium-ion battery thermal runaway thermal hazard toxic hazard
分类号:
X949
DOI:
10.11731/j.issn.1673-193x.2021.09.022
文献标志码:
A
摘要:
为探究不同外热功率(220,170,120,70 W)下锂离子电池的热失控特性,采用动压变温实验舱作为燃爆实验舱,并利用量热仪和ISO-9705烟气分析仪监测特征参数,对荷电状态(SOC)为100%的18650型锂离子电池进行高温热失控实验。结果表明:在不同的外热功率条件下,锂离子电池进入热失控的过程呈现出相似的趋势,但是各阶段的特性却存在差异。池体表面中心温度、HRR,THR和耗氧量均随外热功率的降低而降低。高外热功率下燃爆响应时间点明显提前,池体温度更高,220 W外热功率下,燃爆响时间点为176 s,池体温度为720.6 ℃,比70 W时提前366 s,高210.03 ℃,可见高外热功率时,电池热危害性更高。热解烟气CO的峰值体积百分比浓度随着外热功率的降低而升高,而CxHy的峰值质量百分比浓度降低,,CO2的峰值体积百分比浓度降低。在70 W外热功率时,CO峰值体积百分比浓度高达0.322%,220 W时CO峰值体积百分比浓度仅为0.165%,说明低外热功率时,电池毒危害性更高。
Abstract:
In order to explore the thermal runaway characteristics of lithium-ion batteries under different external heat powers (220,170,120 and 70 W),the dynamic pressure and variable temperature experimental chamber was used as the combustion and explosion experimental chamber,and the characteristic parameters were monitored by the calorimeter and ISO-9705 flue gas analyzer.The high-temperature thermal runaway experiments of 18650 lithium-ion battery with 100% state of charge (SOC) were carried out.The results showed that under different external thermal power conditions,the process of lithium-ion battery getting into the thermal runaway presented a similar trend,but the characteristics of each stage were different.The surface central temperature,HRR,THR and oxygen consumption decreased with the decrease of external thermal power.Under the high external thermal power,the detonation response time point was obviously advanced,and the cell temperature was higher.At 220 W external thermal power,the detonation response time point was 176 s,and the cell temperature was 720.6 ℃,which was 366 s earlier and 210.03 ℃ higher than that at 70 W.It could be seen that the thermal hazard of the battery was higher when the external thermal power was high.The peak concentration of CO in pyrolysis flue gas increased with the decrease of external thermal power,while the peak concentrations of CxHy and CO2 decreased.When the external thermal power was 70 W,the peak concentration of CO was as high as 0.322%,and the peak concentration of CO was only 0.165% at 220 W,which indicated that the toxic hazard of the battery was higher when the external thermal power was low.

参考文献/References:

[1]YE J N,CHEN H D,WANG Q S,et al.Thermal behavior and failure mechanism of lithium ion cells during overcharge under adiabatic conditions[J].Applied Energy,2016,182:464-474.
[2]LYON R E,WALTERS R N.Energetics of lithium ion battery failure[J].Journal of Hazardous Materials,2016,318(15):164-172.
[3]JHU C Y,WANG Y W,SHUC M,et al.Thermal explosion hazards on 18650 lithium ion batteries with a VSP2 adiabatic calorimeter[J].Journal of Hazardous Materials,2011,192(1):99-107.
[4]SPOTNITZ R,FRANKLIN J.Abuse behavior of high-power,lithium-ion cells[J].Journal of Power Sources,2003,113(1):81-100.
[5]ORENDORFF C J,ROTHE P,NAGASUBRAMANIAN G.Experimental triggers for internal short circuits in lithium-ion cells[J].Journal of Power Sources,2011,196(15):6554-6558.
[6]MAO B,HUANG P,CHEN H,et al.Self-heating reaction and thermal runaway criticality of the lithium ion battery[J].International Journal of Heat and Mass Transfer,2020,149:119178.
[7]NAGASUBRAMANIAN G,ORENGORFF C J.Hydrofluoroether electrolytes for lithium-ion batteries:reduced gas decomposition and nonflammable[J].Journal of Power Sources,2011,196(20):8604-8609.
[8]WANG Q S,PING P,ZHAO X J,et al.Thermal runaway caused fire and explosion of lithium ion battery[J].2012,208(24):210-224.
[9]黄沛丰.锂离子电池火灾危险性及热失控临界条件研究[D].合肥:中国科学技术大学,2018.
[10]刘奕,张旭,陈现涛,等.不同压力下软包装锂离子电池的热失控研究[J].电池,2020,50(3):237-241. LIU Yi,ZHANG Xu,CHEN Xiantao,et al.Research on thermal runaway of soft-packaged lithium-ion battery under different pressures[J].Battery,2020,50(3):237-241.
[11]THORNTONW M.The relation of oxygen to the heat of combustion of organic compounds[J].1917,33(194):196-203.
[12]NSCORT A L S.Estimation of rate of heat release by means of oxygen consumption measurements[J].Fire and Materials,1980,4(2):61-65.
[13]JANSSERNS M L.Measuring rate of heat release by oxygen consumption[J].Fire Technology,1991,27(3):234-249.
[14]FENG X,OUYANG M,LIU X,et al.Thermal runaway mechanism of lithium ion battery for electric vehicles:a review[J].Energy Storage Materials,2017:S2405829716303464.
[15]DO A,JW A,MC B,et al.Impact of high-temperature environment on the optimal cycle rate of lithium-ion battery[J].Journal of Energy Storage,2020,28:101242.

相似文献/References:

[1]郭超超,张青松.锂离子电池热解气体爆炸极限测定及其危险性分析[J].中国安全生产科学技术,2016,12(9):46.[doi:10.11731/j.issn.1673-193x.2016.09.008]
 GUO Chaochao,ZHANG Qingsong.Determination on explosion limit of pyrolysis gas released by lithium-ion battery and its risk analysis[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(9):46.[doi:10.11731/j.issn.1673-193x.2016.09.008]
[2]潘鸣宇,及洪泉,邱明泉,等.电动汽车锂离子电池组火灾数值模拟研究[J].中国安全生产科学技术,2020,16(6):104.[doi:10.11731/j.issn.1673-193x.2020.06.017]
 PAN Mingyu,JI Hongquan,QIU Mingquan,et al.Numerical simulation study on fire of lithiumion battery pack in electric vehicle[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2020,16(9):104.[doi:10.11731/j.issn.1673-193x.2020.06.017]
[3]张青松,刘添添,赵洋.受限空间环境压力对三元锂离子电池热失控影响*[J].中国安全生产科学技术,2021,17(6):36.[doi:10.11731/j.issn.1673-193x.2021.06.006]
 ZHANG Qingsong,LIU Tiantian,ZHAO Yang.Influence of environmental pressure in confined space on thermal runaway of ternary lithium ion battery[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2021,17(9):36.[doi:10.11731/j.issn.1673-193x.2021.06.006]
[4]张伟,郝朝龙,刘添添,等.航空压力环境对锂离子电池热解气体爆炸极限影响*[J].中国安全生产科学技术,2022,18(11):155.[doi:10.11731/j.issn.1673-193x.2022.11.022]
 ZHANG Wei,HAO Chaolong,LIU Tiantian,et al.Influence of aviation pressure environment on explosion limit of pyrolysis gas from lithium-ion batteries[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(9):155.[doi:10.11731/j.issn.1673-193x.2022.11.022]
[5]刘一帆,常崇烨,李舒泓,等.全氟己酮微乳液抑制锂离子电池热失控研究*[J].中国安全生产科学技术,2023,19(9):27.[doi:10.11731/j.issn.1673-193x.2023.09.004]
 LIU Yifan,CHANG Chongye,LI Shuhong,et al.Research on inhibition of lithium-ion battery thermal runaway by dodecafluoro-2-methylpentan-3-one microemulsion[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2023,19(9):27.[doi:10.11731/j.issn.1673-193x.2023.09.004]
[6]张一和,季经纬,刘通,等.基于雾冷系统的锂离子电池热失控抑制研究*[J].中国安全生产科学技术,2023,19(12):109.[doi:10.11731/j.issn.1673-193x.2023.12.014]
 ZHANG Yihe,JI Jingwei,LIU Tong,et al.Study on thermal runaway suppression of li-ion battery with mist cooling system[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2023,19(9):109.[doi:10.11731/j.issn.1673-193x.2023.12.014]

备注/Memo

备注/Memo:
收稿日期: 2020-12-13
* 基金项目: 国家重点研发计划项目(2018YFC0809500)
作者简介: 陈现涛,博士研究生,副教授,主要研究方向为机载锂电池热安全。
更新日期/Last Update: 2021-10-02