|本期目录/Table of Contents|

[1]程方明,张安邦,王焘,等.高压天然气非恒定速率泄漏扩散数值模拟研究*[J].中国安全生产科学技术,2021,17(1):90-95.[doi:10.11731/j.issn.1673-193x.2021.01.015]
 CHENG Fangming,ZHANG Anbang,WANG Tao,et al.Numerical simulation study on non-constant rate leakage and diffusion of highpressure natural gas[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2021,17(1):90-95.[doi:10.11731/j.issn.1673-193x.2021.01.015]
点击复制

高压天然气非恒定速率泄漏扩散数值模拟研究*
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
17
期数:
2021年1期
页码:
90-95
栏目:
职业安全卫生管理与技术
出版日期:
2021-01-31

文章信息/Info

Title:
Numerical simulation study on non-constant rate leakage and diffusion of highpressure natural gas
文章编号:
1673-193X(2021)-01-0090-06
作者:
程方明张安邦王焘罗振敏王涛陈言
(1.西安科技大学 安全科学与工程学院,陕西 西安 710054;
2.西安市城市公共安全与消防救援重点实验室,陕西 西安 710054;
3.兵器工业卫生研究所,陕西 西安 710065)
Author(s):
CHENG Fangming ZHANG Anbang WANG Tao LUO Zhenmin WANG Tao CHEN Yan
(1.School of Energy Science and Engineering,Xi’an University of Science and Technology,Xi’an Shaanxi 710054,China;
2.Xi’an Key Laboratory of Urban Public Safety and Fire Rescue,Xi’an Shaanxi 710054,China;
3.Institute of Ordnance Industry Health,Xi’an Shaanxi 710065,China)
关键词:
天然气储配厂泄漏过程模型等效喷嘴模型FLACS
Keywords:
natural gas storage and distribution plant leakage process model equivalent nozzle model FLACS
分类号:
X937
DOI:
10.11731/j.issn.1673-193x.2021.01.015
文献标志码:
A
摘要:
为保障天然气工业安全生产与运营,以某天然气储配厂为例,采用等效喷嘴和过程模型,利用FLACS软件对罐区高压天然气非恒定速率泄漏扩散进行数值模拟,考察环境风速及泄漏时间对气体泄漏扩散的影响。结果表明:储存压力为1.05 MPa的天然气储罐发生泄漏会产生欠膨胀射流,泄漏初期具有447.44 kJ的高动能,并在近场扩散起主导作用;在气体持续泄漏的200 s内,泄漏质量流量仅发生0.71 kg/s的变化,对泄漏扩散影响不明显,各风速条件下的泄漏会在动能稳定风场和浮力的共同作用下,使可燃气云体积及分布在一定时间内达到动态稳定状态,等效化学计量气云体积不再发生明显变化;质量流量会随着时间的增加变化会越来越明显,进行非恒定速率气体泄漏扩散的模拟,会更有利于现场情况的判断和处置;风速的增大与风向对扩散的影响成正比,与气云趋于动态稳定的时间、可燃气云分布及体积成反比。
Abstract:
For the safety production and operation of the natural gas industry,taking a natural gas storage and distribution plant as an example,through using the equivalent nozzle and process model,the FLACS software was used to numerically simulate the non-constant rate leakage and diffusion of highpressure natural gas in the tank area,and the influence of environmental wind speed and leakage time on the gas leakage and diffusion was investigated.The results showed that the leakage of natural gas storage tank with the storage pressure of 1.05 MPa would generate the underexpansion jet,which had a high kinetic energy of 447.44 kJ in the initial stage of leakage and played a leading role in the near field diffusion of gas.Within 200 s of gas continuous leakage,the mass flow rate of leakage only changed by 0.71 kg/s,and its influence on the leakage and diffusion was not obvious.The leakage under various wind speed conditions would make the volume and distribution of combustible gas cloud reach the dynamic stability state in a certain time under the combined effect of kinetic energy,stable wind field and buoyancy,and the equivalent stoichiometric gas cloud volume would not change obviously.The mass flow rate would change more and more obviously with the increase of time,so the simulation of non-constant rate gas leakage and diffusion would be more conducive to the judgment and disposal of field conditions.The increase of wind speed was directly proportional to the influence of wind direction on diffusion,and inversely proportional to the distribution and volume of combustible gas cloud and the time when gas cloud tended to be dynamically stable.

参考文献/References:

[1]LI J D,MA G W,MADHAT A J,et al.Gas dispersion risk analysis of safety gap effect on the innovating FLNG vessel with a cylindrical platform[J].Journal of Loss Prevention in the Process Industries,2016,40(2):304-316.
[2]董刚,唐维维,杜春,等.高压管道天然气泄漏扩散过程的数值模拟[J].中国安全生产科学技术,2009,5(6):11-15. DONG Gang,TANG Weiwei,DU Chun,et al.Numerical simulations of release and dispersion process from high-pressure natural gas pipeline[J].Journal of Safety Science and Technology,2009,5(6):11-15.
[3]LI X,ZHOU R,KONOVESSIS D.CFD analysis of natural gas dispersion in engine room space based on multi-factor coupling[J].Ocean Engineering,2016,111(12):524-532.
[4]BIRCH A D,BROWN D R,DODSON M G,et al.The structure and concentration decay of high pressure jets of natural gas[J].Combustion Science and Technology,1984,36(5-6):249-261.
[5]BIRCH A D,HUGHES D J,SWAFFIELD F.Velocity decay of high pressure jets[J].Combustion Science and Technology,1987,52(1-3):161-167.
[6]CHENOWETH D R,PAOLUCCI S.Compressible flow of a two-phase fluid between finite vessels (Ⅰ):Ideal carrier gas[J].International Journal of Multiphase Flow,1990,16(6):1047-1069.
[7]CHENOWETH D R,PAOLUCCI S.Compressible flow of a two-phase fluid between finite vessels(Ⅱ):Abel-Noble carrier gas[J].International Journal of Multiphase Flow,1992,5(5):669-689.
[8]CHEFER R W,HOUF W G,WILLIAMS T C,et al.Characterization of high-pressure,underexpanded hydrogen-jet flames[J].International Journal of Hydrogen Energy,2007,32(12):2081-2093.
[9]刘凯迪.基于两区模型的高压欠膨胀氢气射流研究[D].济南:山东大学,2019.
[10]刘自亮,熊思江,花争立,等.埋地输氢管道泄漏爆炸事故后果模拟分析[J].中国安全生产科学技术,2019,15(12):94-100. LIU Ziliang,XIONG Sijiang,HUA Zhengli,et al.Simulation analysis on leakage and explosion accident consequence of buried hydrogen pipeline[J].Journal of Safety Science and Technology,2019,15(12):94-100.
[11]李雪芳,毕景良,柯道友.高压氢气储存系统泄漏的热力学模型[J].清华大学学报(自然科学版),2013,53(4):503-508. LI Xuefang,BI Jingliang,KE Daoyou.Thermodynamic models of leaks from high-pressure hydrogen storage systems[J].Journal of Tsinghua University (Natural Science Edition),2013,53(4):503-508.
[12]GEXCON A S.FLACS v10.2 user’s manual[M].Bergen:GEXCON A S,2014.
[13]HANNA S R,HANSEN O R,DHARMAVARAM S.FLACS CFD air quality model performance evaluation with Kit Fox,MUST,Prairie Grass,and EMU observations [J].Atmospheric Environment,2004,38(28):4675-4687.
[14]HANNA S R,CHANG J C.Use of the Kit Fox field data to analyze dense gas modeling issues [J].Atmospheric Environment,2001,35(13):2231-2242.
[15]BILTOFT C A.Customerreport for mock urban setting test (MUST)[R].Army Dugway Proving Ground,Dugway,US:West Desert Test Center,2001.
[16]BARAD M L.Projectprairie grass:a field program in diffusion [R].Bedford:Air Force Cambridge research Center,1958.
[17]HALL R C.Evaluation ofmodel uncertainty—CFD modelling of near-field atmospheric dispersion [R].Ashley Road,Epsom,Surrey KT18 5BW,UK:WS Atkins,Woodcote Grove,1997.
[18]HANSEN O R.Validation of FLACS against experimental data sets from the model evaluation database for LNG vapor dispersion[J].Journal of Loss Prevention in the Process Industries,2010.23(8),857-877.
[19]周魁斌,刘娇艳,蒋军成.高压可燃气体泄漏动力学过程与喷射火热灾害分析[J].化工学报,2018,69(4):1276-1287. ZHOU Kuibin,LIU Jiaoyan,JIANG Juncheng.Analyses on dynamical process of high pressure combustible gas leakage and thermal hazard of jet fire[J].Journal of Chemical Industry and Engineering (China),2018,69(4):1276-1287.
[20]陈晓坤,李鑫,王秋红,等.乙烯球罐区多源泄漏爆炸数值仿真[J].西安科技大学学报,2019,39(6):957-964. CHEN Xiaokun,LI Xin,WANG Qiuhong,et al.Numerical simulation on multi-source gas leakage and explosion in ethylene tank area[J].Journal of Xi’an University of Science and Technology,2019,39(6):957-964.

相似文献/References:

[1]孟超,赵晶.居室天然气泄漏扩散过程仿真研究[J].中国安全生产科学技术,2011,7(5):153.
 MENG Chao,ZHAO Jing.Study on simulation of leakage and diffusion process for natural gas in residence[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2011,7(1):153.
[2]闫家伟,宋文华,董影超,等.液化天然气储罐火灾爆炸事故的定量分析[J].中国安全生产科学技术,2011,7(7):88.
 YAN Jia-wei SONG Wen-hua DONG Ying-chao XIE Fei,The quantitative analysis of LNG tanks’s fire and explosion accident[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2011,7(1):88.
[3]王永强,牛星钢,谭钦文,等.重型车辆荷载下埋地天然气管道的安全分析[J].中国安全生产科学技术,2011,7(8):109.
 WANG Yong-qiang,NIU Xiang-gang,TAN Qin-wen.Safety analysis for buried gas pipelines under heavy vehicle loads[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2011,7(1):109.
[4]刘红芳,刘成敏,王海宁.我国天然气风险及评价方法分析[J].中国安全生产科学技术,2014,10(2):86.[doi:10.11731/j.issn.1673-193x.2014.02.015]
 LIU Hong fang,LIU Cheng min,WANG Hai ning.Analysis on risk and evaluation methods for natural gas[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(1):86.[doi:10.11731/j.issn.1673-193x.2014.02.015]
[5]董刚,唐维维,杜春,等.高压管道天然气泄漏扩散过程的数值模拟*[J].中国安全生产科学技术,2009,5(6):11.
 DONG Gang,TANG Wei wei,DU Chun,et al.Numerical simulations of release and dispersion process from highpressure natural gas pipeline[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2009,5(1):11.
[6]王新,马贵阳,杨玉林,等.山谷地区埋地天然气管道泄漏三维数值模拟[J].中国安全生产科学技术,2015,11(1):46.[doi:10.11731/j.issn.1673-193x.2015.01.008]
 WANG Xin,MA Gui-yang,YANG Yu-lin,et al.3D numerical simulation on leakage of buried natural gas pipeline in valley area[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2015,11(1):46.[doi:10.11731/j.issn.1673-193x.2015.01.008]
[7]黄雪驰,马贵阳,王锡钰,等.基于稳定风场的架空天然气管道泄漏数值模拟[J].中国安全生产科学技术,2015,11(7):109.[doi:10.11731/j.issn.1673-193x.2015.07.018]
 HUANG Xue-chi,MA Gui-yang,WANG Xi-yu,et al.Numerical simulation on leakage of overhead gas pipeline based on stable wind fields[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2015,11(1):109.[doi:10.11731/j.issn.1673-193x.2015.07.018]
[8]任少云.密闭空间内天然气混合及爆炸传播规律研究[J].中国安全生产科学技术,2016,12(11):130.[doi:10.11731/j.issn.1673-193x.2016.11.022]
 REN Shaoyun.Study on mixing and explosion propagation laws of natural gas in confined space[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(1):130.[doi:10.11731/j.issn.1673-193x.2016.11.022]
[9]杨冬冬,陈国明,师吉浩.海洋平台井喷含硫天然气扩散危险区域研究[J].中国安全生产科学技术,2017,13(8):114.[doi:10.11731/j.issn.1673-193x.2017.08.018]
 YANG Dongdong,CHEN Guoming,SHI Jihao.Research on dangerous region of H2S-containing natural gas diffusion resulting from offshore platform blowout[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(1):114.[doi:10.11731/j.issn.1673-193x.2017.08.018]
[10]栾国华,张璧祥,赵春磊,等.基于天然气供气业务突发事件情景构建的应急演练技术与实践[J].中国安全生产科学技术,2019,15(2):145.[doi:10.11731/j.issn.1673-193x.2019.02.023]
 LUAN Guohua,ZHANG Bixiang,ZHAO Chunlei,et al.Research and application of emergency drill based on scenario construction for emergency of natural gas supply business[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2019,15(1):145.[doi:10.11731/j.issn.1673-193x.2019.02.023]

备注/Memo

备注/Memo:
收稿日期: 2020-07-14
* 基金项目: 国家重点研发计划项目(2017YFC0804702-5);国家自然科学基金项目(51674193)
作者简介: 程方明,博士,副教授,主要研究方向为气体与粉尘燃爆防控。
更新日期/Last Update: 2021-02-04