|本期目录/Table of Contents|

[1]韩帅,李玉,李伟东,等.基于CFD的大型储油罐区池火灾数值模拟*[J].中国安全生产科学技术,2020,16(9):133-139.[doi:10.11731/j.issn.1673-193x.2020.09.021]
 HAN Shuai,LI Yu,LI Weidong,et al.Numerical simulation of pool fire in large oil tank farm based on CFD[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2020,16(9):133-139.[doi:10.11731/j.issn.1673-193x.2020.09.021]
点击复制

基于CFD的大型储油罐区池火灾数值模拟*
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
16
期数:
2020年9期
页码:
133-139
栏目:
职业安全卫生管理与技术
出版日期:
2020-09-30

文章信息/Info

Title:
Numerical simulation of pool fire in large oil tank farm based on CFD
文章编号:
1673-193X(2020)-09-0133-07
作者:
韩帅李玉李伟东李鸿烨陈明哲
(1.德州市消防救援支队,山东 德州 253000;
2.中国人民警察大学,河北 廊坊 065000;
3.毕节市消防救援支队,贵州 毕节 551700;
4.东营市消防救援支队,山东 东营257000)
Author(s):
HAN Shuai LI Yu LI Weidong LI Hongye CHEN Mingzhe
(1.Dezhou Fire Rescue Detachment,Dezhou Shandong 253000,China;
2.China People’s Police University,Langfang Hebei 065000,China;
3.Bijie Fire Rescue Detachment,Bijie Guizhou 551700,China;
4.Dongying Fire Rescue Detachment,Dongying Shandong 257000,China)
关键词:
大型储油罐区池火灾数值模拟CFD
Keywords:
large oil tank farm pool fire numerical simulation CFD
分类号:
X937
DOI:
10.11731/j.issn.1673-193x.2020.09.021
文献标志码:
A
摘要:
为研究大型储油罐区池火灾温度、热辐射强度、流速、组分等燃烧特性参数在油罐外不同区域的变化规律,以10万m3原油储罐区为研究对象,构建罐区池火灾燃烧数学模型,运用计算流体动力学(Computational Fluid Dynamics,CFD)技术进行数值模拟研究。结果表明:整个火场温度大致呈锥形分布,火焰温度最高可达1 500 K,纵向来看,底部温度较高,上部温度逐渐降低,径向来看,中心温度较高,周围温度逐渐降低;随着距罐壁以及距罐顶距离的不断增加,热辐射强度均呈现逐渐降低的趋势,最高热辐射强度为132 kW/m2;罐顶上方区域存在火焰卷吸现象,中心位置流速最大,最高可达56 m/s,罐底区域存在火焰贴壁现象;得到燃烧产物(CO和CO2)的体积分数分布,以CO体积分数为0.001作为判断依据,推断出火焰高度为120 m。研究结果可为今后此类火灾事故的防治提供理论支撑。
Abstract:
In order to study the change rules of combustion characteristic parameters such as the temperature,heat radiation intensity,flow rate and components in different areas outside the oil tank,the 100 000 m3 crude oil tank farm was taken as the research object.A mathematical model of pool fire combustion in the tank farm was constructed,and the computational fluid dynamics (CFD) technology was applied to carry out the numerical simulation.The results showed that the temperature distribution of the whole fire field was roughly the coneshape,and the flame temperature could reach up to 1 500 K.In the longitudinal view,the bottom temperature was higher,and the upper temperature decreased gradually.In the radial view,the center temperature was higher,and the surrounding temperature decreased gradually.The maximum thermal radiation intensity was 132 kW/m2,and with the increasing distance from the tank wall and the tank top,the thermal radiation intensity decreased gradually.The phenomenon of flame entrainment existed at the upper area of tank,and the flow velocity at the center was the largest,up to 56 m/s,and the phenomenon of flame sticking to the wall existed at the bottom of tank.The volume fraction distribution of combustion products (CO and CO2) were obtained,and the flame height was deduced to be 120 m with the volume concentration of CO being 0.001 as the judgment basis.The research results provide theoretical support for the prevention and control of such fire accidents in the future.

参考文献/References:

[1]贠璞.大型原油商业储备油库火灾危险性数值模拟分析[J].中国安全生产科学技术,2013,9(12):179-184. YUN Pu.Numerical simulation on fire hazard of large commercial crude oil reserve depot[J].Journal of Safety Science and Technology,2013,9(12):179-184.
[2]朱颖超,张在旭,朱渊超,等.我国石油战略储备问题研究[J].油气储运,2007,26(9):8-12. ZHU Yingchao,ZHANG Zaixu,ZHU Yuanchao,et al.Study on strategic petroleum reserve in China [J].Oil & Gas Storage and Transportation,2007,26(9):8-12.
[3]张智,魏捍东.从大连油库火灾谈大型油(气)罐库区火灾扑救[J].消防科学与技术,2011,30(12):1166-1169. ZHANG Zhi,WEI Handong.Firefighting of large oil(gas) tank reservoir fire based on Dalian oil depot fire [J].Fire Science and Technology,2011,30(12):1166-1169.
[4]张启波,袁凤丽,付钰.大型浮顶油罐的危险性分析及安全对策[J].中国安全生产科学技术,2012,8(6):134-138. ZHANG Qibo,YUAN Fengli,FU Yu.Risk analysis and safety countermeasures of the large floating roof tank [J].Journal of Safety Science and Technology,2012,8(6):134-138.
[5]HESKESTAD G.Engineering relations for fire plumes [J].Fire Safety Journal,1984,7(1):25-32.
[6]KOSEKI H,IWATA Y,NATSUME Y,et al.Tomakomailarge scale crude oil fire experiments[J].Fire Technology,2000,36(1):24-38.
[7]PLANASCUCHI E,CASAL J.Modelling temperature evolution in equipment engulfed in a pool-fire[J].Fire Safety Journal,1998,30(3):251-268.
[8]郭欣,樊建春.火灾环境下邻近油罐的热辐射分布规律模拟[J].油气储运,2017,36(5):495-501. GUO Xin,FAN Jianchun.Simulation on distribution laws of heat radiation on the neighboringoil tank in fire environment [J].Oil & Gas Storage and Transportation,2017,36(5):495-501.
[9]杨君涛,魏东,张学魁,等.着火油罐燃烧特性的理论分析[J].工程热物理学报,2006,27(1):151-154. YANG Juntao,WEI Dong,ZHANG Xuekui,et al.The theoretical analysis of the burning characteristics for oil tank fires[J].Journal of Engineering Thermophysics,2006,27(1):151-154.
[10]李玉,张涛.基于CFD的油罐全液面火灾热辐射分布研究[J].消防科学与技术,2018,37(1):7-10. LI Yu,ZHANG Tao.Research on distribution of thermal radiation in whole-surface tank fire based on CFD [J].Fire Science and Technology,2018,37(1):7-10.
[11]丁欣硕,焦楠.Fluent 14.5流体仿真计算从入门到精通[M].北京:清华大学出版社,2014.
[12]刘晖.面向起火点认定的罐区火灾数值分析及实验研究[D].广州:华南理工大学,2011.
[13]李超,刘人玮,李旺,等.大型浮顶储罐原油温度场实验测试研究[J].工程热物理学报,2013,34(12):2332-2334. LI Chao,LIU Renwei,LI Wang,et al.Crude oil temperature measurement in a large-scale floating roof tank [J].Journal of Engineering Thermophysics,2013,34(12):2332-2334.
[14]刘美磊.石油化工行业典型火灾事故数值模拟研究[D].青岛:中国石油大学(华东),2011.
[15]姚智,李德生,董呈杰.火灾环境下储罐热响应行为的数值模拟[J].天津理工大学学报,2018,34(5):61-64. YAO Zhi,LI Desheng,DONG Chengjie.Numerical simulation on thermal response of tank pressure and temperature in fire [J].Journal of Tianjin University of Technology,2018,34(5):61-64.

相似文献/References:

[1]姜虹,李丽霞,沙锡东.甲苯池火辐射数值模拟[J].中国安全生产科学技术,2011,7(4):34.
 JIANG Hong,LI Li-xia,SHA Xi-dong.Numerical simulation of heat radiation by toluene pool fire[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2011,7(9):34.
[2]曹彬,张礼敬,张村峰,等.比较FDS和FLUENT在池火灾模拟中的应用[J].中国安全生产科学技术,2011,7(9):45.
 CAO Bin,ZHANG Li-jing,ZHANG Cun-feng,et al.Comparison of FDS and FLUENT applied in the pool fire simulation[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2011,7(9):45.
[3]王文静,孙标,郭开华.液化天然气场站事故定量风险评价方法研究[J].中国安全生产科学技术,2011,7(4):114.
 WANG Wen-jing,SUN Biao,GUO Kai-hua.Quantitative Risk Analysis for LNG Station Accidents[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2011,7(9):114.
[4]高进东.化工储罐区池火灾多米诺效应风险评估[J].中国安全生产科学技术,2013,9(7):54.[doi:10.11731/j.issn.1673-193x.2013.07.009]
 GAO Jin dong.Risk assessment on domino effect caused by pool fire in chemical tanks[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(9):54.[doi:10.11731/j.issn.1673-193x.2013.07.009]
[5]王海龙,包其富,李学盛,等.基于多米诺效应的油品储罐区个人风险研究*[J].中国安全生产科学技术,2009,5(5):55.
 WANG Hai long,BAO Qi fu,LI Xue sheng,et al.Research on individual risk of tank area based on domino effect[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2009,5(9):55.
[6]李伟东,陈明哲,李玉,等.基于热-结构耦合分析的液化石油气储罐失效预警判定*[J].中国安全生产科学技术,2021,17(2):91.[doi:10.11731/j.issn.1673-193x.2021.02.014]
 LI Weidong,CHEN Mingzhe,LI Yu,et al.Failure warning determination of liquefied petroleum gas storage tank based on thermal-structural coupling analysis[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2021,17(9):91.[doi:10.11731/j.issn.1673-193x.2021.02.014]

备注/Memo

备注/Memo:
收稿日期: 2020-05-27
* 基金项目: 国家重点研发计划项目(2016YFC0800609);廊坊市科技支撑计划项目(2019011023);武警学院科研创新计划项目(BSKY2018001)
作者简介: 韩帅,硕士,主要研究方向为消防工程。
通信作者: 李伟东,博士,讲师,主要研究方向为消防工程。
更新日期/Last Update: 2020-10-08