|本期目录/Table of Contents|

[1]李建,史聪灵,李昀松,等.隧道与横通道交叉角对火灾烟气蔓延影响机制研究[J].中国安全生产科学技术,2020,16(7):36-42.[doi:10.11731/j.issn.1673-193x.2020.07.006]
 LI Jian,SHI Congling,LI Yunsong,et al.Research on influence mechanism of crossing angle between tunnel and cross passage on fire smoke spread[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2020,16(7):36-42.[doi:10.11731/j.issn.1673-193x.2020.07.006]
点击复制

隧道与横通道交叉角对火灾烟气蔓延影响机制研究
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
16
期数:
2020年7期
页码:
36-42
栏目:
学术论著
出版日期:
2020-07-30

文章信息/Info

Title:
Research on influence mechanism of crossing angle between tunnel and cross passage on fire smoke spread
文章编号:
1673-193X(2020)-07-0036-07
作者:
李建史聪灵李昀松张晓磊
(1.中国安全生产科学研究院 地铁火灾与客流疏运安全北京市重点实验室,北京 100012;
2.武汉理工大学 安全科学与应急管理学院,湖北 武汉 430070;
3.中国科学技术大学 火灾科学国家重点实验室,安徽 合肥 230026)
Author(s):
LI Jian SHI Congling LI Yunsong ZHANG Xiaolei
(1.Beijing Key Laboratory of Metro Fire and Passenger Transportation Safety,China Academy of Safety Science and Technology,Beijing 100012,China;
2.School of Safety Science and Emergency Management,Wuhan University of Technology,Wuhan Hubei 430070,China;
3.State Key Laboratory of Fire Science,University of Science and Technology of China,Hefei Anhui 230026,China)
关键词:
隧道横通道交叉角火灾烟气横通道烟气纵向蔓延恢复长度
Keywords:
tunnel cross passage crossing angle fire smoke recovery length of longitudinal smoke spread in cross passage
分类号:
X932
DOI:
10.11731/j.issn.1673-193x.2020.07.006
文献标志码:
A
摘要:
为探索隧道与横通道交叉角对火灾烟气蔓延的影响机制,采用FDS数值模拟,研究横通道与隧道不同交叉角情况下火灾烟气温度、浓度、烟气层高度等的变化规律,建立开启火源下风向横通道时隧道内烟气最高温度修正公式,提出烟气纵向蔓延恢复长度的概念,并探讨其影响规律。 结果表明:隧道和横通道交叉角越小,隧道内同一位置烟气层高度越高,当交叉角由90°降低到30°时,烟气层高度最大增加32%;烟气纵向蔓延恢复长度与交叉角及通风速率呈正相关,而与火源功率几乎无关。研究结果对隧道通风排烟系统设计及相关标准的制定具有参考意义。
Abstract:
In order to explore the influence mechanism of crossing angle between tunnel and cross passage on the fire smoke spread,the variation law of fire smoke temperature,concentration and flue gas layer height under different cross angles of cross passage and tunnel are studied by FDS numerical simulation.A modified formula for the maximum temperature of smoke in the tunnel when opening the cross passage downstream the fire source was established,then the concept of the recovery length of longitudinal smoke spread was put forward,and the influence laws were studied.The results showed that the smaller the cross angle between tunnel and cross passage,the higher the height of smoke layer at the same location in the tunnel,and when the cross angle decreased from 90° to 30°,the height of smoke layer increased by 32% at maximum.The recovery length of longitudinal smoke spread was positively correlated with the crossing angle and the ventilation speed,while almost independent of the power of fire source.The research results have reference value for the design of tunnel ventilation and smoke exhaust system and the formulation of related standards.

参考文献/References:

[1]KURIOKA H,OKA Y,SATOH H,et al.Fire properties in near field of square fire source with longitudinal ventilation in tunnels [J].Fire Safety Journal,2003,38 (4):319-340.
[2]LI Y Z,LEI B,INGASON H.The maximum temperature of buoyancy-driven smoke flow beneath the ceiling in tunnel fires [J].Fire Safety Journal,2011,46 (4):204-210.
[3]KIM E,WOYCHEESE J P,DEMBSEY N A.Fire dynamics simulator (Version 4.0) simulation for tunnel fire scenarios with forced,transient,longitudinal ventilation flows [J].Fire Technology,2008,44 (2):137-166.
[4]HU L H,HUO R,LI Y Z,et al.Full-scale burning tests on studying smoke temperature and velocity along a corridor [J].Tunnelling and Underground Space Technology,2005,20 (3):223-229.
[5]SHAFEE S,YOZGATLIGIL A.An analysis of tunnel fire characteristics under the effects of vehicular blockage and tunnel inclination [J].Tunnelling and Underground Space Technology,2018,79:274-285.
[6]CHOW W K,GAO Y,ZHAO J H,et al.A study on tilted tunnel fire under natural ventilation [J].Fire Safety Journal,2016,81:44-57.
[7]FAN C G,JIN Z F,ZHANG J Q,et al.Effects of ambient wind on thermal smoke exhaust from a shaft in tunnels with natural ventilation [J].Applied Thermal Engineering,2017,117:254-262.
[8]DU T,YANG D,DING Y.Driving force for preventing smoke backlayering in downhill tunnel fires using forced longitudinal ventilation [J].Tunnelling and Underground Space Technology,2018,79:76-82.
[9]STURM P,RODLER J,THALLER T,et al.Hot smoke tests for smoke propagation investigations in long rail tunnels [J].Fire Safety Journal,2019,105:196-203.
[10]CHEN Y J,SHU C M,HO S P,et al.Analysis of smoke movement in the Hsuehshan tunnel fire [J].Tunnelling and Underground Space Technology,2019,84:142-150.
[11]李颖臻,雷波.隧道间横通道临界风速模型[J].铁道学报,2008,30 (3):87-90. LI Yingzhen,LEI Bo.Model of critical velocity in a tunnel cross-passage [J].Journal of the China Railway Society,2008,30(3):87-90.
[12]姜学鹏,张剑高,何超,等.铁路隧道横通道临界风速研究[J].中国铁道科学,2017,38(4):55-61. JIANG Xuepeng,ZHANG Jiangao,HE Chao,et al.Study on critical wind velocity of cross passage in railway tunnel [J].China Railway Science,2017,38(4):55-61.
[13]LIU C,ZHONG M H,SHI C L,et al.Temperature profile of fire-induced smoke in node area of a full-scale mine shaft tunnel under natural ventilation [J].Applied Thermal Engineering,2017,110:382-389.
[14]马俊,胡导云,杨平.平面斜交联络通道水平冻结及实测分析[J].隧道建设,2019,39(12):1965-1972. MA Jun,HU Daoyun,YANG Ping.Horizontal freezing and measurement analysis of plane oblique connection gallery[J].Tunnel Construction,2019,39(12):1965-1972.
[15]CHEN L F,MAO P F,ZHANG Y C,et al.Experi-mental study on smoke characteristics of bifurcated tunnel fire [J].Tunnelling and Underground Space Technology,2020:103295.
[16]LIU C,ZHONG M H,SONG S Y,et al.Experimental and numerical study on critical ventilation velocity for confining fire smoke in metro connected tunnel [J].Tunnelling and Underground Space Technology,2020:103296.
[17]杨永斌,许洁.纵向通风城市交通联系隧道限制风速研究[J].消防科学与技术,2016,35(10):1388-1391. YANG Yongbin,XU Jie.Study on limited velocity of urban traffic link tunnel with longitudinal ventilation[J].Fire Science and Technology,2016,35(10):1388-1391.
[18]招商局重庆交通科研设计院有限公司.公路隧道通风设计细则:JTG/T D70/2-02—2014[S].北京:人民交通出版社,2014.
[19]交通部重庆公路科学研究院.公路隧道通风照明设计规范:JTJ 026.1—1999[S].北京:人民交通出版社,2000.
[20]李建.地铁长大区间隧道火灾风机启动方案数值模拟研究[J].中国安全生产科学技术,2017,9(13):139-144. LI Jian.Study on numerical simulation of fan startup schemes for fire in long-large internal tunnel of subway[J].Journal of Safety Science and Technology,2017,9(13):139-144.

相似文献/References:

[1]杨小玉.隧道二次衬砌与初期支护间脱空原因分析及处理[J].中国安全生产科学技术,2012,8(2):140.
 YANG Xiao yu.Cause analysis and treatment scheme of the separation between the secondary liner and primary support of tunnel[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2012,8(7):140.
[2]李岳,戴俊,顾寅,等.大变形隧道长短锚杆支护机理及设计应用[J].中国安全生产科学技术,2012,8(5):11.
 LI Yue,DAI Jun,GU Yin,et al.Support mechanism and parameter design applications of long and short anchor in large deformation tunnel[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2012,8(7):11.
[3]史聪灵 ,钟茂华,何理,等.地铁车站及隧道全尺寸火灾实验研究(1)-实验设计[J].中国安全生产科学技术,2012,8(6):22.
 SHI Cong ling,ZHONG Mao hua,HE Li,et al.Investigation of fullscale fire experiments in metro station and tunnel (1) —experimental setup[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2012,8(7):22.
[4]张靖岩,王婉娣,彭伟,等.纵向风速对隧道内烟气发展影响的实验研究[J].中国安全生产科学技术,2010,6(1):17.
 ZHANG Jing-yan,WANG Wan-di,PENG Wei,et al.Experimental study on the effect of longitudinal ventilation on smoke development in tunnels[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2010,6(7):17.
[5]梅国栋,王云海.三维流固耦合数值模拟在铜锣山隧道安全性评价中的应用*[J].中国安全生产科学技术,2009,5(6):57.
 MEI Guo dong,WANG Yun hai.The application of 3D fluidsolid coupling numerical simulation in the safety accessment of TongLuo Shan tunnel[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2009,5(7):57.
[6]崔慧强.不同火源功率及火源—出口距离对隧道火灾临界风速的影响研究[J].中国安全生产科学技术,2015,11(8):5.[doi:10.11731/j.issn.1673-193x.2015.08.001]
 CUI Hui-qiang.Study on effect of different fire HRR and fire-exit distances to critical wind velocity in tunnel fires[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2015,11(7):5.[doi:10.11731/j.issn.1673-193x.2015.08.001]
[7]罗珊,蒋宏业,姚安林,等.输气管道隧道的脆弱性评估方法研究[J].中国安全生产科学技术,2016,12(2):113.[doi:10.11731/j.issn.1673-193X.2016.02.020]
 LUO Shan,JIANG Hongye,YAO Anlin,et al.Research on vulnerability assessment method of tunnel for natural gas pipeline[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(7):113.[doi:10.11731/j.issn.1673-193X.2016.02.020]
[8]李地元,王涛.浅埋隧道爆破施工对地表建筑物安全的 试验和数值分析[J].中国安全生产科学技术,2015,11(11):112.[doi:10.11731/j.issn.1673-193x.2015.11.019]
 LI Di-yuan,WANG Tao.Experimental and numerical analysis on influence of blasting in shallow tunnel excavation on surface buildings[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2015,11(7):112.[doi:10.11731/j.issn.1673-193x.2015.11.019]
[9]文霞,姚安林,陈谦,等.隧道并行输气管道爆炸对邻管的冲击效应分析[J].中国安全生产科学技术,2017,13(1):156.[doi:10.11731/j.issn.1673-193x.2017.01.026]
 WEN Xia,YAO Anlin,CHENG Qian,et al.Analysis on impact effect of gas pipeline explosion to adjacent pipeline for parallel pipeline in tunnel[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(7):156.[doi:10.11731/j.issn.1673-193x.2017.01.026]
[10]王睿,袁岽洋,张进增,等.基于Hoek-Brown强度准则的隧道围岩松动圈分析[J].中国安全生产科学技术,2017,13(3):58.[doi:10.11731/j.issn.1673-193x.2017.03.009]
 WANG Rui,YUAN Dongyang,ZHANG Jinzeng,et al.Analysis on broken zone of surrounding rock in tunnel based on Hoek-Brown strength criterion[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(7):58.[doi:10.11731/j.issn.1673-193x.2017.03.009]

备注/Memo

备注/Memo:
收稿日期: 2020-05-06
* 基金项目: 国家“万人计划”入选人才特殊支持经费项目(WRJH201801);中国安全生产科学研究院基本科研业务费专项项目(2020JBKY02,2020JBKY01);国家自然科学基金项目(51674152)
作者简介: 李建,博士,工程师,主要研究方向为地铁火灾安全。
通信作者: 史聪灵,博士,教授级高级工程师,主要研究方向为地铁火灾安全。
更新日期/Last Update: 2020-08-06