|本期目录/Table of Contents|

[1]黄坤,邓平,李岳鹏,等.气固两相流90°弯管抗冲蚀结构优化[J].中国安全生产科学技术,2019,15(8):94-100.[doi:10.11731/j.issn.1673-193x.2019.08.015]
 HUANG Kun,DENG Ping,LI Yuepeng,et al.Structure optimization for erosion resistance of 90° elbow with gassolid twophase flow[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2019,15(8):94-100.[doi:10.11731/j.issn.1673-193x.2019.08.015]
点击复制

气固两相流90°弯管抗冲蚀结构优化
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
15
期数:
2019年8期
页码:
94-100
栏目:
职业安全卫生管理与技术
出版日期:
2019-08-31

文章信息/Info

Title:
Structure optimization for erosion resistance of 90° elbow with gassolid twophase flow
文章编号:
1673-193X(2019)-08-0094-07
作者:
黄坤1邓平1李岳鹏2廖柠3赫文博4
(1.西南石油大学 石油与天然气工程学院,四川 成都 610500;
2.舟山市港航和口岸管理局,浙江 舟山 316000;
3.重庆华润凯源燃气有限公司,重庆 400000;
4.浙江浙能温州液化天然气有限公司,浙江 温州 325000)
Author(s):
HUANG Kun1DENG Ping1LI Yuepeng2LIAO Ning3HE Wenbo4
(1.College of Petroleum Engineering,Southwest Petroleum University,Chengdu Sichuan 610500,China;
2.Port and Shipping Administration of Zhoushan,Zhoushan Zhejiang 316000,China;
3.Chongqing Huarun Kaiyuan Gas Co.,Ltd.,Chongqing 400000,China;
4.W
关键词:
气固两相流三段式弯管冲蚀磨损数值模拟结构优化
Keywords:
gassolid twophase flow threesection elbow erosion numerical simulation structure optimization
分类号:
X937;TE832
DOI:
10.11731/j.issn.1673-193x.2019.08.015
文献标志码:
A
摘要:
为了提高天然气输送管道90°弯管的耐磨性能,提出了1种三段弯曲式弯管,通过对弯管弯曲段进行三段式改进来减小弯管中二次流的大小,优化弯管内的流场,改善弯管的冲蚀磨损状况。利用COMSOL仿真软件建立三段式弯管模型,并以弯管弯曲段和出口段二次流平均值之和最小为优化目标,在约束条件下凭借COMSOL中的COBYLA优化算法得到了最优管形;用Fluent对优化后的三段式弯管进行冲蚀数值模拟并与一段式弯管的模拟结果进行对比分析。研究结果表明:与一段式90°弯管相比,优化后的三段式弯管流场更加平稳,其弯曲段的二次流强度大幅降低,弯管壁面的冲蚀磨损程度得到较大的改善。
Abstract:
A threesection bending elbow was proposed to improve the erosion resistance of the 90° elbow in the natural gas transportation pipeline.The threesection improvement was carried out on the bending section of elbow to reduce the secondary flow,optimize the flow field in the elbow,and improve the erosion state of elbow.A model of threesection elbow was established by using the COMSOL simulation software,and taking the minimum sum of average values of secondary flow at the bending section and exit section of the elbow as the objective function,the optimal pipe shape under the constraint conditions was obtained by the COBYLA optimization algorithm in COMSOL.The numerical simulation of erosion was conducted on the optimized threesection elbow by using the Fluent software,and the results were compared with the simulation results of onesection elbow.The results showed that compared with the onesection 90° elbow,the flow field in the optimized threesection elbow was more stable,the intensity of secondary flow at the bending section reduced greatly,and the erosion degree of the inner wall surface of elbow was improved greatly.

参考文献/References:

[1]林楠.高压输气管线中典型管件的冲蚀磨损研究[D].北京:北京交通大学,2013.
[2]宋晓琴,黄诗嵬,朱珊珊.90°弯管气固两相流磨损研究[J].钻采工艺,2015,38(6):56-59.SONG Xiaoqin,HUANG Shiwei,ZHU Shanshan.Study on gas-solid two phase flow in 90 degree bend [J].Drilling and Production Technology,2015,38 (6):56-59.
[3]张孟昀,马贵阳,李存磊,等.弯管与盲通管冲蚀磨损对比分析研究[J].中国安全生产科学技术,2017,13(3):76-81.ZHANG Mengyun,MA Guiyang,LI Cunlei,et al.Comparative analysis on erosion wear of elbow pipe and blind tube [J].Journal of Safety Science and Technology,2017,13 (3):76-81.
[4]陈冠国,褚秀萍,张宏亮,等.关于冲蚀磨损问题[J].河北理工学院学报,1997,19(4):27-32.CHEN Guanguo,CHU Xiuping,ZHANG Hongliang,et al.Problem on erosion wear [J].Journal of Hebei Institute of Technology,1997,19 (4):27-32.
[5]马颖,任峻,李元东,等.冲蚀磨损研究的进展[J].兰州理工大学学报,2005,31(1):21-25.MA Ying,REN Jun,LI Yuandong,et al.Development of research on erosion of materials [J].Journal of Lanzhou University of Technology,2005,31 (1):21-25.
[6]FREZA.Corrosion and erosion-corrosion behavior of materials used for oil sands applications[D].Engineering and Physical Science,Herriot-Watt University,2005.
[7]郑云萍,王欢欢,易昊林,等.天然气管道弯头冲蚀与防护仿真研究[J].计算机仿真,2015,32(8):427-430.ZHENG Yunping,WANG Huanhuan,YI Haolin,et al.Simulation of erosion-corrosion for different angles of gas pipeline elbows [J].Computer Simulation,2015,32 (8):427-430.
[8]SONG X Q,LIN J Z,ZHAO J F,et al.Research on reducingerosion by adding ribs on the wall in particulate two-phaseflows[J].Wear,1996,193(1):1-7.
[9]FAN Jianren,SUN Ping,ZHENG Youqu,et al.A numericalstudy of a protection technique against tube erosion[J].Wear,1999,225(1):458-464.
[10]POURARIA H,SEO J K,PAIK J K.Numerical study of erosion in critical components of subsea pipeline:tees vs bends [J].Ships and Offshore Structures,2017,12 (2):233-243.
[11]戚胜,李想,邵天成.气力输送弯管结构替代装置流场特性数值分析[J].化学反应工程与工艺,2016,32(5):455-460.QI Sheng,LI Xiang,SHAO Tiancheng.Numerical analysis of flow field characteristics of a device in replacement of pipe bend in pneumatic conveying system [J].Chemical Reaction Engineering and Technology,2016,32 (5):455-460.
[12]王宇,何琪,于飞,等.组合弯头内气固两相流动磨损特性的数值模拟与结构优化[J].中国电机工程学报,2018,38(3):832-839.WANG Yu,HE Qi,YU Fei,et al.Numerical simulation of the erosion characteristics and structure optimization of elbows connection for gas-solid flow [J].Proceedings of the CSEE,2018,38 (3):832-839.
[13]DUARTE C A R,DE SOUZA F J,DOS SANTOS V F.Mitigating elbow erosion with a vortex chamber [J].Powder Technology,2016,288:6-25.
[14]季楚凌,李长俊,马树锋,等.弯管仿生耐磨方法数值模拟[J].中南大学学报(自然科学版),2016,47(10):3582-3589.JI Chuling,LI Changjun,MA Shufeng,et al.Numerical simulation of bionic method for improving property of elbow erosion resistance [J].Journal of Central South University (Science and Technology),2016,47 (10):3582-3589.
[15]毛靖儒,柳成文,相晓伟.弯管内二次流对固粒磨损壁面的影响[J].西安交通大学学报,2004,38(7):746-749.MAO Jingru,LIU Chengwen,XIANG Xiaowei.Effect of secondary flow on erosion from solid particles in 90° curved duct of quadrate section [J].Journal of Xi’an Jiaotong University,2004,38 (7):746-749.
[16]刘伟,张展.90°弯管的三段弯曲式管形优化设计[J].机械科学与技术,2019,38(1):142-151.LIU Wei,ZHANG Zhan.Optimal design of a three-section-bending 90° elbow pipe [J].Mechanical Science and Technology for Aerospace Engineering,2019,38 (1):142-151.
[17]POWELL M J D.A direct search optimization method thatmodels the objective and constraint functions by linear interpolation [M].Netherlands:Springer,1994:51-67.
[18]KIM J,YADAV M,KIM S.Characteristics of secondary flow induced by 90-degree elbow in turbulent pipe flow [J].Engineering Applications of Computational Fluid Mechanics,2014,8 (2):229-239.
[19]OKA Y I,OKAMURA K,YOSHIDA T.particle estimation of erosion damage caused by solid particle impact.Part1,Part2:effects of impact parameters on a predictive equation [J].Wear,2005,259 (1):95-101.

相似文献/References:

[1]王晓珍.煤巷掘进过程中粉尘浓度影响因素分析[J].中国安全生产科学技术,2011,7(4):75.
 WANG Xiao-zhen.Anlysis of dust concentration influence factor in coal roadway driving[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2011,7(8):75.
[2]李长俊,季楚凌,陈磊,等.气固两相流下球阀磨损特性研究[J].中国安全生产科学技术,2015,11(3):5.[doi:10.11731/j.issn.1673-193x.2015.03.001]
 LI Chang-jun,JI Chu-ling,CHEN Lei,et al.Research on erosion characteristics of ball valve under gas-solid two-phase flow[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2015,11(8):5.[doi:10.11731/j.issn.1673-193x.2015.03.001]
[3]王永龙,王振锋,卢卫永,等.瓦斯抽采钻孔钻屑气固耦合运移压力损耗分析[J].中国安全生产科学技术,2015,11(4):13.[doi:10.11731/j.issn.1673-193X.2015.04.002]
 WANG Yong-long,WANG Zhen-feng,LU Wei-yong,et al.pressure loss of drilling cuttings movement caused by gas-solid coupling in gas extraction borehole[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2015,11(8):13.[doi:10.11731/j.issn.1673-193X.2015.04.002]
[4]李博涛,张宏图,位乐,等.基于CFD-DEM的旋风除尘器内气固流动特性研究[J].中国安全生产科学技术,2019,15(11):151.[doi:10.11731/j.issn.1673-193x.2019.11.024]
 LI Botao,ZHANG Hongtu,WEI Le,et al.Study on gassolid flow characteristics of cyclone dust collector based on CFD-DEM[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2019,15(8):151.[doi:10.11731/j.issn.1673-193x.2019.11.024]
[5]陈景序,荆德吉,葛少成,等.皮带输煤暗道通风排尘改造方案优化研究[J].中国安全生产科学技术,2018,14(4):82.[doi:10.11731/j.issn.1673-193x.2018.04.013]
 CHEN Jingxu,JING Deji,GE Shaocheng,et al.Research on optimization of alteration scheme for ventilation and dust exhaust in coal belt conveyer tunnel[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(8):82.[doi:10.11731/j.issn.1673-193x.2018.04.013]

备注/Memo

备注/Memo:
收稿日期: 2019-05-17;数字出版日期: 2019-08-28
* 基金项目: 国家重点研发计划(2016YFC0802100)
作者简介: 黄坤,硕士,教授,主要研究方向为油气储运安全技术。
通信作者: 邓平,硕士研究生,主要研究方向为油气储运安全技术。
更新日期/Last Update: 2019-09-04