|本期目录/Table of Contents|

[1]王羽扬,刘勇,王沉,等.高应力大变形软岩巷道“三壳”围岩控制机理及应用[J].中国安全生产科学技术,2019,15(7):100-106.[doi:10.11731/j.issn.1673-193x.2019.07.016]
 WANG Yuyang,LIU Yong,WANG Chen,et al.Control mechanism and application of “Triple shell” surrounding rock in high stress and large deformation soft rock roadway[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2019,15(7):100-106.[doi:10.11731/j.issn.1673-193x.2019.07.016]
点击复制

高应力大变形软岩巷道“三壳”围岩控制机理及应用
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
15
期数:
2019年7期
页码:
100-106
栏目:
职业安全卫生管理与技术
出版日期:
2019-07-31

文章信息/Info

Title:
Control mechanism and application of “Triple shell” surrounding rock in high stress and large deformation soft rock roadway
文章编号:
1673-193X(2019)-07-0100-07
作者:
王羽扬1刘勇12王沉12康向涛12冷光海1
(1.贵州大学 矿业学院,贵州 贵阳 550025;
2.贵州省复杂地质矿山开采安全技术工程中心,贵州 贵阳 550025)
Author(s):
WANG Yuyang1 LIU Yong12 WANG Chen12 KANG Xiangtao12 LENG Guanghai1
(1. Mining College, Guizhou University, Guiyang Guizhou 550025, China;
2. Guizhou Engineering Center for Safe Mining Technology Under Complex Geologic Condition, Guiyang Guizhou 550025, China)
关键词:
高应力大变形软岩巷道“三壳”支护钢管混凝土支架
Keywords:
high stress large deformation soft rock roadway “Triple shell” support concretefilled steel tube support
分类号:
X936;TD322
DOI:
10.11731/j.issn.1673-193x.2019.07.016
文献标志码:
A
摘要:
为解决土城煤矿14运输上山软岩巷道变形量大、锚杆索失效严重等技术难题,通过现场调研、室内试验、理论分析、数值模拟及工业性试验等方法,揭示了围岩变形特征以及巷道失稳破坏机理,提出了“三壳”围岩控制理论。基于以上研究,设计了“锚杆锚索+灌浆+钢管混凝土支架”的复合支护方案,建立了基于“三壳”围岩控制理论的“三壳”支护结构体力学模型,计算出设计方案的极限承载能力为2.54 MPa,随后采用 FLAC3D数值模拟软件对设计方案进行模拟分析,验证了方案合理性。最后,该复合支护得到成功运用,现场监测结果表明:巷道顶底板以及两帮变形量均低于100 mm,巷道未发生明显变形,支护效果良好。
Abstract:
In order to solve the technical difficulties such as serious deformation of No. 14 uphill soft rock roadway and bolt (cable) failure in Tucheng mine, the deformation characteristics of surrounding rock and the instability failure mechanism of roadway were revealed through site investigation, laboratory test, theoretical analysis, numerical simulation and industrial tests, and the “Triple Shell” surrounding rock control theory was put forward. On the basis of the research mentioned above, a comprehensive supporting scheme with “bolt(cable) + grouting + concretefilled steel tube support” was designed, and a “Triple shell” supporting structure mechanical model based on the “Triple shell” surrounding rock control theory was established. The extreme carrying capacity of the design scheme was calculated, which was 2.54 MPa, then the numerical simulation software FLAC3D was used to verify the rationality of the scheme through the simulation analysis. Finally, the comprehensive supporting scheme was successfully applied, and the actual monitoring results at site presented the good support effect, i.e. the deformation at roof, floor and both side walls of roadway were all less than 100 mm, and no obvious deformation was discovered.

参考文献/References:

[1]何满潮,谢和平,彭苏萍,等.深部开采岩体力学研究[J] .岩石力学与工程学报,2005,24(16):2803-2813. HE Manchao, XIE Heping, PENG Suping, et al. Study on rock mechanics in deep mining engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(16): 2803-2813.
[2]杨仁树,李永亮,郭东明,等.深部高应力软岩巷道变形破坏原因及支护技术[J].采矿与安全工程学报,2017,34(6):1035-1041.YANG Renshu, LI Yongliang, GUO Dongming, et al. Deformation reasons and support technology of deep and high-stress soft rock roadway[J]. Journal of Mining and Safety Engineering, 2017, 34(6): 1035-1041.
[3]张辉,李国盛,支光辉. 松散煤岩体钻封注耦合注浆锚固机理与试验研究[J].中国全生产科学技术,2018,14(8):141-145.ZHANG Hui, LI Guosheng, ZHI Guanghui. Mechanism and experimental study of coupled grouting and anchoring for drilling, sealing and grouting of loose coal and rock mass[J]. Journal of Satefy Science and Technology, 2018, 14(8):141-145.
[4]何满潮,高尔新.软岩巷道耦合支护力学——21世纪学科生长点:世纪之交的煤炭科学技术学术年会论文集[C]//中国煤炭学会.1997:4.
[5]董方庭,宋宏伟,郭志宏,等.巷道围岩松动圈支护理论[J] .煤炭学报,1994,19(1):21-32.DONG Fangting, SONG Hongwei, GUO Zhihong, et al.Supporting theory of surrounding rock loose circle in roadway[J]. Journal of China Coal Society, 1994, 19(1): 21-32.
[6]孟庆彬,韩立军,张建,等. 深部高应力破碎软岩巷道支护技术研究及其应用[J]. 中南大学学报(自然科学版),2016,47(11):3861-3872. MENG Qingbin, HAN Lijun, ZHANG Jian, et al. Research and application of supporting technology in deep high stress fractured soft-rock roadway [J]. Journal of Central South University(Science and Technology), 2016, 47(11): 3861-3872.
[7]曹平,王飞,邱冠豪,等.软岩大变形巷道支护技术及应用[J].中国安全生产科学技术,2014,10(8):69-74.CAO Ping, WANG Fei, QIU Guanhao, et al. Support technology and its application for large deformation of soft rock roadway[J]. Journal of Satefy Science and Technology,2014,10(8):69-74.
[8]李学彬,杨仁树,高延法,等. 大断面软岩斜井高强度钢管混凝土支架支护技术[J]. 煤炭学报,2013,38(10):1742-1748.LI Xuebin, YANG Renshu, GAO Yanfa, et al. High-strength steel tubular confined concrete support technology for large section soft rock inclined shaft[J]. Journal of China Coal Society, 2013, 38(10): 1742-1748.
[9]刘珂铭,高延法,张凤银. 大断面极软岩巷道钢管混凝土支架复合支护技术[J]. 采矿与安全工程学报,2017,34(2):243-250.LIU Keming, GAO Yanfa, ZHANG Fengyin. Composite supporting technology of concrete-filled steel tubular support in extremely soft rock roadway with large section[J]. Journal of Mining and Safety Engineering, 2017, 34(2): 243-250.
[10]王连国,陆银龙,黄耀光,等.深部软岩巷道深-浅耦合全断面锚注支护研究[J].中国矿业大学报,2016,45(1):11-18.WANG Lianguo, LU Yinlong, HUANG Yaoguang ,et al. Deep-shallow coupled bolt-grouting support technology for soft rock roadway in deep mine[J]. Journal of China University of Mining and Technology, 2016, 45(1): 11-18.
[11]蔡绍怀. 现代钢管混凝土结构(修订版)[M]. 北京:人民交通出版社,2007.
[12]余伟健,高谦,朱川曲. 深部软弱围岩叠加承载拱强度理论及应用研究[J]. 岩石力学与工程报,2010,29(10):2134-2142.YU Weijian, GAO Qian, ZHU Chuanqu. Study of strength theory and application of overlap arch bearing body for deep soft surrounding rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(10): 2134-2142.
[13]高玮.岩石力学[M]. 北京:北京大学出版社,2010:149-160.
[14]高丹盈,朱海堂,汤寄予. 钢纤维高强混凝土的抗剪强度[J].硅酸盐学报,2005,33(1):82-86.GAO Danying, ZHU Haitang, TANG Jiyu. Shear strength of steel fiber reinforced high-strength concrete[J]. Journal of The Chinese Ceramic Society, 2005, 33(1): 82-86.
[15]何满潮,袁和生,靖洪文,等. 中国煤矿锚杆支护理论与实践[M]. 北京:科学出版社,2004:114-115.

相似文献/References:

[1]崔光耀,祁家所,王明胜.中义隧道片理化玄武岩段大变形控制技术研究*[J].中国安全生产科学技术,2020,16(10):115.[doi:10.11731/j.issn.1673-193x.2020.10.018]
 CUI Guangyao,QI Jiasuo,WANG Mingsheng.Study on large deformation control technology of schistositized basalt section in Zhongyi tunnel[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2020,16(7):115.[doi:10.11731/j.issn.1673-193x.2020.10.018]
[2]杨春和,张超,马昌坤,等.高应力条件下尾矿破碎特性及坝体稳定性研究*[J].中国安全生产科学技术,2022,18(2):20.[doi:10.11731/j.issn.1673-193x.2022.02.002]
 YANG Chunhe,ZHANG Chao,MA Changkun,et al.Study on tailings breakage characteristics and dam stability under high stress conditions[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(7):20.[doi:10.11731/j.issn.1673-193x.2022.02.002]
[3]崔光耀,克旭,郭艳军,等.强风化炭质板岩地层隧道限阻耗能大变形控制技术研究*[J].中国安全生产科学技术,2023,19(6):98.[doi:10.11731/j.issn.1673-193x.2023.06.014]
 CUI Guangyao,KE Xu,GUO Yanjun,et al.Study on large deformation control technology of resistance-limiting and energy-dissipating for tunnel in strongly weathered carbonaceous slate stratum[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2023,19(7):98.[doi:10.11731/j.issn.1673-193x.2023.06.014]
[4]张航,胡建菁,吕能超.基于TFAHP-可拓法的隧道大变形风险评估*[J].中国安全生产科学技术,2023,19(10):21.[doi:10.11731/j.issn.1673-193x.2023.10.003]
 ZHANG Hang,HU Jianjing,LYU Nengchao.Risk assessment of tunnel large deformation based on TFAHP and extension method[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2023,19(7):21.[doi:10.11731/j.issn.1673-193x.2023.10.003]

备注/Memo

备注/Memo:
收稿日期: 2019-04-13
* 基金项目: 贵州省本科高校一流专业建设项目(SJZY2017006);贵州省科技计划项目(黔科合平台人才[2018]5781号、黔科合SY字[2013]3107号);贵州省教育厅青年科技人才成长项目(黔科合KY字[2018]115);贵州大学引进人才科研基金项目(贵大人基合字2016-56)
作者简介: 王羽扬,硕士研究生,主要研究方向为巷道支护。
通信作者: 刘勇,博士,教授,主要研究方向为矿业系统工程。
更新日期/Last Update: 2019-08-07