|本期目录/Table of Contents|

[1]丁建旭,杜群贵,吴雨蒙,等.铝粉分散过程中粒径效应的三维数值研究[J].中国安全生产科学技术,2019,15(3):37-43.[doi:10.11731/j.issn.1673-193x.2019.03.006]
 DING Jianxu,DU Qungui,WU Yumeng,et al.3D numerical study on particle size effect in dispersion process of aluminum dust[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2019,15(3):37-43.[doi:10.11731/j.issn.1673-193x.2019.03.006]
点击复制

铝粉分散过程中粒径效应的三维数值研究
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
15
期数:
2019年3期
页码:
37-43
栏目:
学术论著
出版日期:
2019-03-31

文章信息/Info

Title:
3D numerical study on particle size effect in dispersion process of aluminum dust
文章编号:
1673-193X(2019)-03-0037-07
作者:
丁建旭12杜群贵2吴雨蒙13陈冬青1王新华1
(1.广州特种机电设备检测研究院 国家防爆设备质量监督检验中心,广东 广州 510760;2. 华南理工大学 机械与汽车工程学院,广东 广州 510006; 3. 广东工业大学 机电工程学院,广东 广州 510006)
Author(s):
DING Jianxu12DU Qungui2WU Yumeng13CHEN Dongqing1WANG Xinhua1
(1. China National Quality Supervision and Testing Center of Explosionproof Equipment, Guangzhou Academy of Special Equipment Inspection & Testing, Guangzhou Guangdong 510760, China;2. School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou Guangdong 510006, China;3. School of Electro Mechanical Engineering, Guangdong University of Technology, Guangzhou Guangdong 510006, China)
关键词:
粉尘粒径分散铝粉20 L爆炸测试装置
Keywords:
dust particle size dispersion aluminum dust 20 L explosion testing apparatus
分类号:
X932;O382
DOI:
10.11731/j.issn.1673-193x.2019.03.006
文献标志码:
A
摘要:
为了研究不同粒径的铝粉在20 L爆炸测试装置中的分散规律,基于计算模型的非结构网格划分,耦合欧拉和拉格朗日方法,实现了描述可压缩气体演化的时间平均Navier-Stokes方程组和粒子运动的DPM动量平衡方程的求解,获得了不同粒径(25,50和100 μm)的铝粉在20 L爆炸仓内分散的三维时空演化规律。研究结果表明:铝粉粒径的差异对爆炸仓点火中心的湍动能和速度的演化过程影响不显著,但对粉尘浓度的变化率和峰值均具有重要影响;随着粒径的增大,峰值浓度越小,但均高于形式浓度0.25 kg/m3,达到峰值浓度的时间越滞后。
Abstract:
To study the dispersion laws of aluminum dust with different particle sizes in the 20 L explosion testing apparatus, based on the unstructured meshing of computational model and a coupled EulerianLagrangian approach, both the timeaveraged NavierStokes equations describing the evolution of compressible gas and DPM momentum balance equation of particle motion were solved, and the 3D spacetime evolution laws of dispersion of aluminum dust with different particle sizes (25 μm, 50 μm and 100 μm) in the 20 L explosion chamber were obtained. The results showed that the difference of the particle size of aluminum dust had no significant influence on the evolution process of turbulent energy and velocity in the ignition center of the explosion chamber, but it had an important influence on both the change rate and peak value of the dust concentration. With the increase of the particle size, the peak concentration became smaller, but all higher than the normal concentration of 0.25 kg/m3, and the longer time needed to reach the peak concentration.

参考文献/References:

[1]WANG C, DING J X, SHU C W, et al. Three-dimensional ghost-fluid large-scale numerical investigation on air explosion [J]. Computers and Fluids, 2016, 137:70-79.
[2]JIANG H P, BI M S, LI B, et al. Inhibition evaluation of ABC powder in aluminum dust explosion [J]. Journal of Hazardous Materials, 2019, 361(5):273-282.
[3]SUNDARAM D S, PURI P, YANG V. A general theory of ignition and combustion of nano- and micron-sized aluminum particles [J]. Combustion and Flame, 2016, 169: 94-109.
[4]MYERS T J. Reducing aluminum dust explosion hazards: case study of dust inerting in an aluminum buffing operation [J]. Journal of Hazardous Materials, 2008, 159:72-80.
[5]VIGNES A, MUNOZ F, BOUILLARD J, et al. Risk assessment of the ignitability and explosivity of aluminum nanopowders [J]. Process Safety and Environmental Protection, 2012, 90:304-310.
[6]YAN X Q, DI L, YU J L. Secondary explosions in relief duct during aluminum dust explosion venting [J]. Procedia Engineering, 2012, 45:431-434.
[7]SIKES T, MANNAN M S, PETERSEN E L. Laminar flame speeds of nano-aluminum/methane hybrid mixtures [J]. Combustion and Flame, 2016,166:284-294.
[8]GAO W, ZHANG X Y, ZHANG D W, et al. Flame propagation behaviours in nano-metal dust explosions [J]. Powder Technology, 2017, 321:154-162.
[9]董海佩,程贵海,李晓泉,等. 钛粉尘云的爆炸特性 [J]. 中国粉体技术, 2018, 24:32-36. DONG Haipei CHENG Guihai, LI Xiaoquan, et al. Explosion characteristic of titanium dust cloud [J]. China Powder Science and Technology, 2018,24:32-36.
[10]喻健良,纪文涛,孙会利,等. 甲烷/石松子粉尘混合体系爆炸下限的变化规律 [J]. 爆炸与冲击, 2017,37:924-930. YU Jianliang, JI Wwentao, SUN Huili, et al. Experimental investigation of the lower explosion limit of hybrid mixtures of methane and lycopodium dust [J]. Explosion and Shock Waves, 2017, 37:924-930.
[11]DAHOE A E, CANT R S, PEGG M J, et al. On the transient flow in the 20-liter explosion sphere [J]. Journal of Loss Prevention in the Process Industries, 2001, 14:475-487.
[12]CHENG J C, ZHANG Q. Flow characteristics of dusts dispersed by high-pressure air blast in 20 L chamber [J]. Engineering Computations, 2015, 32(3):742-765.
[13]白建平,范健强,王越,等. 粉尘密度对20 L球罐内粉尘分散规律影响 [J]. 中国安全生产科学技术, 2017, 13(10):38-42. BAI Jianping, FAN Jianqiang, WANG Yue, et al. Effect of dust density on dispersion laws of dust in 20 L spherical tank [J]. Journal of Safety Science and Technology, 2017, 13(10):38-42.
[14]赵一姝,范健强,白建平. 粉尘浓度对20 L球罐内硫磺粉尘分散过程流场特性的影响 [J]. 中国安全生产科学技术, 2018, 14(7):48-53. ZHAO Yishu, FAN Jianqiang, BAI Jianping. Influence of dust concentration on flow field characteristics of sulfur dust during dispersion process in 20 L spherical tank [J]. Journal of Safety Science and Technology, 2018,14(7):48-53.
[15]SARLI V D, RUSSO P, SANCHIRICO R, et al. CFD simulations of dust dispersion in the 20 L vessel: Effect of nominal dust concentration [J]. Journal of Loss Prevention in the Process Industries, 2014, 27:8-12.
[16]SARLI V D, SANCHIRICO R, BENEDETTO A D. On the effect of initial pressure on the minimum explosive concentration of dust in air [J]. Powder Technology, 2018,336:567-572.

相似文献/References:

备注/Memo

备注/Memo:

收稿日期: 2018-12-12;数字出版日期: 2019-03-25
基金项目: 国家重点研发计划项目(2017YFC0804705)
作者简介: 丁建旭,博士,主要研究方向为爆炸机理与安全防护。
通信作者: 王新华,博士,教授级高工,主要研究方向为爆炸机理与安全防护。
更新日期/Last Update: 2019-04-15