|本期目录/Table of Contents|

[1]孙巧雷,李中,孟文波,等.轴向载荷波动下海上测试管柱动力响应与安全系数分析[J].中国安全生产科学技术,2018,14(11):19-25.[doi:10.11731/j.issn.1673-193x.2018.11.003]
 SUN Qiaolei,LI Zhong,MENG Wenbo,et al.Analysis on dynamic response and safety coefficient of offshore testing string under axial load fluctuation[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(11):19-25.[doi:10.11731/j.issn.1673-193x.2018.11.003]
点击复制

轴向载荷波动下海上测试管柱动力响应与安全系数分析
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
14
期数:
2018年11期
页码:
19-25
栏目:
学术论著
出版日期:
2018-11-30

文章信息/Info

Title:
Analysis on dynamic response and safety coefficient of offshore testing string under axial load fluctuation
文章编号:
1673-193X(2018)-11-0019-07
作者:
孙巧雷123李中4孟文波4冯定123杨行12王晓龙1涂忆柳1
(1.长江大学 机械工程学院,湖北 荆州 434023;2.湖北省油气钻完井工具工程技术研究中心,湖北 荆州 434023;3.非常规油气湖北省协同创新中心 湖北 武汉 430100;4.中海石油(中国)有限公司湛江分公司,广东 湛江 524057)
Author(s):
SUN Qiaolei123 LI Zhong4 MENG Wenbo4 FENG Ding123 YANG Hang12 WANG Xiaolong1 TU Yiliu1
(1. College of Mechanical Engineering, Yangtze University, Jingzhou Hubei 434023, China;2. Hubei Engineering Research Center for Oil & Gas Drilling and Completion Tools, Jingzhou Hubei 434023, China;3.Hubei Cooperative Innovation Center of Unconventional Oil and Gas, Wuhan Hubei 430100, China;4. CNOOC Zhanjiang Branch Company, Zhanjiang Guangdong 524057, China)
关键词:
海上测试管柱轴向力三角形波动正弦波动瞬态动力学动力响应
Keywords:
offshore testing string axial force triangular fluctuation sine fluctuation transient dynamics dynamic response
分类号:
X937
DOI:
10.11731/j.issn.1673-193x.2018.11.003
文献标志码:
A
摘要:
为研究海上测试管柱在作业过程中轴向载荷波动对管柱强度和变形的影响,针对泥线上管柱的作业特点,对适应于简化条件下的泥线上管柱的轴向力计算方法及振动模型进行了推导;基于建立的管柱有限元模型及其固有频率分析结果,应用Workbench进行了不同频率、不同水深、不同波动幅度轴向力下测试管柱的动力响应分析及对应的安全系数计算。研究结果表明:轴向力三角形波动一定周期后,响应参数趋于稳定,波动幅度对管柱的响应结果影响不大;同幅度载荷变化下,正弦波动时的最大应力、最大变形响应数值较三角形波动时要小;随着水深的增加,最大变形、最大应力的数值均明显减小,二者响应规律基本一致;在基频不同倍数的波动下,波动频率对响应频率、稳定前的时间占比、幅度等影响明显;测试管柱在轴向波动载荷作用下的强度均满足材料的使用安全系数,但正弦波动时管柱的变形与应力始终随轴向力的变化而变化,正弦波动下的管柱易出现周期性疲劳破坏。
Abstract:
In order to study the influence of axial load fluctuation on the strength and deformation of offshore testing string during the operation process, the calculation method of axial force and vibration model of the testing string above the mud line, which were adapted to the simplified conditions, were deduced according to the operation characteristics of the string above the mud line. Based on the established finite element model of the testing string and the analysis results of its natural frequency, the dynamic response analysis and the corresponding safety coefficient calculation of the testing string under the axial force with different frequencies, water depths and fluctuation amplitudes were carried out by using Workbench. The results showed that the response parameters tended to be stable after a certain period of axial force with the triangular fluctuation, and the fluctuation amplitude had little effect on the response results of string. Under the same amplitude of load change, the response values of the maximum stress and the maximum deformation under the sine fluctuation were smaller than those under the triangular fluctuation. With the increase of water depth, both the maximum deformation and the maximum stress decreased obviously with the basically same response laws. Under the fluctuation with different times of natural frequency, the fluctuation frequency had an obvious effect on the response frequency, the proportion of time before the stabilization, the amplitude and others. The strength of the testing string under the fluctuating axial load could meet the usage safety coefficient of the material, however, the deformation and stress of the string always changed with the change of axial force under the sine fluctuation, so the cyclic fatigue failure of string under the sine fluctuation was easy to occur.

参考文献/References:

[1]SALGUERO A,ALMANZA E,NIVENS H. Well-test planning for deepwater wells in high-pressure, high-temperature environments- The Brazilexperience[Z]. Offshore Technology Conference,2007.
[2]LIM D H, KIM Y. Design wave method for the extreme horizontal slow-drift motion of moored floating platforms[J]. Applied Ocean Research, 2018,71:48-58.
[3]孙巧雷,夏成宇,王鹏,等.基于AQWA的半潜式深水钻井平台运动响应与锚泊系统张力响应分析[J].河北科技大学学报,2015,36(5):451-458. SUN Qiaolei,XIA Chengyu,WANG Peng, et al. The tension response analysis of mooring system and movement response analysis of drilling rig based on the AQWA [J]. Journal of Hebei University of Science and Technology,2015,36(5):451-458.
[4]HASSAN R, HADDAD S S, WA W W, et al. Gas formation testing in exploration phase[C]//North Africa Technical Conference and Exhibition. Cairo, Egypt , April 15-17, 2013.
[5]WENDLER C,MAIA C T. Planning and conducting well tests in deep and ultra-deep water to mitigate potential risks and justify expense for theoperator[Z]. Society of Petroleum Engineers,2011.
[6]魏晓东, 刘清友. 深水测试管柱力学行为研究进展及发展方向[J]. 西南石油大学学报(自然科学版), 2015, 37(1):172-178. WEI Xiaodong,LIU Qingyou. The status and development in mechanical behavior of deepwater well-testing strings[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2015,37(1):172-178.
[7]唐海雄, 张俊斌, 汪顺文,等. 高温致测试管柱伸长和受力计算分析[J]. 石油机械, 2010, 38(5):84-86. TANG Haixiong, ZHANG Junbin, WANG Shunwen, et al. Calculation and analysis of elongation and force of pipe string induced by high temperature[J]. China petroleum machinery,2010,38(5):84-86.
[8]谢鑫,付建红,张智,等.深水测试管柱动力学分析[J].天然气工业,2011,31(1):77-79,115-116. XIE Xin, FU Jianhong,ZHANG Zhi,et al. Mechanical analysis of deep water well testing strings[J]. Natural Gas Industry, 2011,31(1):77-79,115-116.
[9]戴宗,罗东红,梁卫,等.南海深水气田测试设计与实践[J].中国海上油气,2012,24(1):25-28. DAI Zong,LUO Donghong,LIANG Wei,et al. A DST design and practice in deep-water gasfields, South China Sea[J]. China Offshore Oil and Gas ,2012,24(1):25-28.
[10]赵启彬,刘振江,王尔钧.海上高温高压井测试工艺优化研究[J].钻采工艺,2015,38(1):32-34. ZHAO Qibin,LIU Zhenjiang,WANG Erjun. Improvement and application of off-shore HPHT well testing technology [J]. Drilling & Production Technology,2015,38(1):32-34.
[11]LIU Kang, CHEN Guoming,CHANG Yuanjiang,et al. Nonlinear dynamic analysis and fatigue damage assessment for a deepwater test string subjected to random loads[J]. Petroleum Science,2016,13(1):126-134.
[12]阚长宾,杨进,于晓聪,等.深水高温高压井隔热测试管柱技术[J].石油钻采工艺,2016,38(6):796-800. KAN Changbin,YANG Jin, YU Xiaocong,et al. Heat-insulated testing string technology for deepwater HTHP wells[J]. Oil Drilling & Production Technology,2016,38(6): 796-800.
[13]马磊,王尔钧,魏安超,等. 海上油气井测试管柱决策系统研究[J]. 油气井测试,2017,26(2):28-32. MA Lei,WANG Erjun,WEI Anchao,et al. Well testing string decision-makeing system for offshore oil and gas well[J].Well Testing, 2017,26(2):28-32.
[14]何玉发,李紫晗,张滨海,等.深水气井测试临界携液条件的优化设计[J].天然气工业,2017,37(9):63-70. HE Yufa,LI Zihan,ZHANG Binhai,et al.Design optimization of critical liquid-carrying condition for deepwater gas well testing[J].Natural Gas Industry,2017,37(9):63-70.
[15]LI Zifeng,LI Jingyuan.Fundamental equations for dynamic analysis of rod and pipe string in oil-gas wells and application in static buckling analysis[J].Journal of Canadian Petroleum Technology,2002,41( 5) : 44-53.
[16]PATILLO P D.Reaffirming the API drill-String axial design equation[J].Petroleum Engineering International,1988:35-37.
[17]韩志勇.液压环境选的油井管柱力学[M].北京:石油工业出版社,2011.
[18]张强,刘昱良,许杰,等.轴向均布载荷和约束对石油钻采管柱失稳长度的影响[J].数学的实践与认识,2016,46(9):135-142. ZHANG Qiang, LIU Yuliang, XU Jie, et al. The effect of axial uniform load and constraint on buckling length of petroleum drilling & production pipe string[J]. Mathematics in Practice and Theory,2016,46(9):135-142.
[19]夏成宇, 孙巧雷, 冯定,等. 液压环境下流体对管柱单元XYZ方向作用力分析[J]. 应用力学学报, 2016, 33(2):215-222,368. XIA Chengyu, SUN Qiaolei, FENG Ding, et al. Force analysis in pipe string unit with static fluid in XYZ direction[J]. Chinese Journal of Applied Mechanics, 2016,33(2):215-222,368.
[20]TIJSSELING A S. Fluid-structure interaction in liquid-filled pipe systems: A review[J]. Fluids and Structures 1996, 10(2):109-146.
[21]MITCHELL R F. Fluid momentum balance defines the effective force[Z]. Society of PetroleumEngineers,2009.
[22]URBANOWICZ K, TIJSSELING A S,FIRKOWSKI M. Comparing convolution-integral models with analytical pipe-flow solutions[C]//XXII Fluid Mechanics Conference.Slok, Poland, September 11-14,2016.
[23]TIJSSELING A S,HOU Q,BOZKUS Z. Analytical solutions for liquid slugs and pigs traveling in pipelines with entrapped gas[C]//Proceedings of the ASME 2017 Pressure Vessels and Piping Conference. Hawaii, USA, July 16-20, 2017.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期: 2018-08-25;数字出版日期:2018-11-23
基金项目: 国家自然科学基金项目(51704034,51275057);国家重大专项课题(2016ZX05038-002-LH001);中海石油(中国)有限公司湛江分公司项目(CCL2017ZJFN2272)
作者简介: 孙巧雷,博士研究生,主要研究方向为管柱力学、井下工具设计、系统仿真与诊断技术等。
通信作者: 冯定,博士,教授,主要研究方向为石油机械及井下工具的设计、诊断及动态仿真的理论与技术应用。
更新日期/Last Update: 2018-12-03