|本期目录/Table of Contents|

[1]田晓建,姚安林,徐涛龙,等.基于SPH-FEM耦合法的含缺陷输气管道爆炸冲击响应研究[J].中国安全生产科学技术,2018,14(9):55-62.[doi:10.11731/j.issn.1673-193x.2018.09.009]
 TIAN Xiaojian,YAO Anlin,XU Taolong,et al.Research on explosion impact response of defective gas pipeline based on SPH-FEM coupling method[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(9):55-62.[doi:10.11731/j.issn.1673-193x.2018.09.009]
点击复制

基于SPH-FEM耦合法的含缺陷输气管道爆炸冲击响应研究
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
14
期数:
2018年9期
页码:
55-62
栏目:
学术论著
出版日期:
2018-09-30

文章信息/Info

Title:
Research on explosion impact response of defective gas pipeline based on SPH-FEM coupling method
文章编号:
1673-193X(2018)-09-0055-08
作者:
田晓建1姚安林12徐涛龙1蒋宏业1李又绿1
(1.西南石油大学 石油与天然气工程学院,四川 成都 610500;2.油气消防四川省重点实验室,四川 成都 610500)
Author(s):
TIAN Xiaojian1 YAO Anlin12 XU Taolong1 JIANG Hongye1 LI Youlyu1
(1. College of Oil & Natural Gas Engineering, Southwest Petroleum University, Chengdu Sichuan 610500, China;2. Oil &Gas Fire Protection Key Laboratory of Sichuan Province, Chengdu Sichuan 610500, China)
关键词:
并行输气管道管道物理爆炸点蚀缺陷SPH-FEM耦合法爆心距
Keywords:
parallel gas pipelines physical explosion of pipeline pitting corrosion defect SPH-FEM coupling method distance to explosion center
分类号:
X937
DOI:
10.11731/j.issn.1673-193x.2018.09.009
文献标志码:
A
摘要:
针对大口径埋地输气管道发生物理爆炸对并行含体积缺陷邻管的冲击行为,利用LS-DYNA和LS-PREPOST有限元软件建立基于光滑粒子流体动力学-有限单元法的管-土-炸药耦合模型,分析不同缺陷深度、不同缺陷表面积、不同缺陷位置和不同爆心距下邻管的动力响应;基于爆腔预估公式和峰值振速经验公式,验证了所建耦合模型的可靠性,并通过设计算例开展多工况分析。研究结果表明:迎爆面上的缺陷处为动力响应的热点区域,最大响应特征值(应力、位移与振速)位于缺陷中心处,随缺陷深度的增加或管间距的减小特征值增速由平缓到急剧;相比缺陷位置和表面尺寸对管道的扰动程度,缺陷深度和爆心距对管道的动力响应影响较大;在本研究的条件下,建议埋地并行输气管道的安全间距不应小于5.16 m,且腐蚀深度不大于管道壁厚的0.633 6倍。研究结果可为埋地输气管道极端灾害下的风险评估提供技术支撑,为并行管道可能的抗爆隔爆设计提供模拟数据支持。
Abstract:
In view of the impact behavior of the physical explosion of large diameter buried gas pipeline to the parallel adjacent pipeline with the volume defects, the pipelinesoilexplosive coupling model based on the smoothed particle hydrodynamics and finite element method (SPH-FEM) was established by using the LS-DYNA and LS-PREPOST finite element software, and the dynamic response of the adjacent pipeline under different depths, surface area and positions of defect and different distances to explosion center was analyzed. The reliability of the coupling model was verified based on the prediction formula of explosion cavity and the empirical formula of peak vibration velocity, and the multiple conditions analysis was carried out through the designed example. The results showed that the defect on the front explosion surface was the hotspot region of dynamic response, the maximum response characteristic values (stress, displacement and vibration velocity) were located at the center of defect, and the increase speed of the characteristic values changed from flat to sharp with the increase of defect depth or the decrease of pipelines' spacing. The influence of defect depth and distance to explosion center on the dynamic response of pipeline was larger compared with the disturbance degree of position and surface size of defect on the pipeline. Under the conditions of this research, it was suggested that the safety spacing of buried parallel gas pipelines should not be less than 5.16 m, and the corrosion depth should not be larger than 0.633 6 times of the wall thickness of pipeline. The results can provide technical support for the risk assessment of buried gas pipelines under the extreme disasters, and provide simulation data support for the possible antiexplosion and flameproof design of parallel pipelines.

参考文献/References:

[1]王萌,李倩,池坤,等. 油气管道并行敷设合理间距分析[J]. 石油和化工设备,2015,18(11):62-65. WANG Meng, LI Qian, CHI Kun, et al. Analysis of reasonable spacing for parallel laying of oil and gas pipelines[J]. Petro & Chemical Equipment, 2015,18(11):62-65.
[2]向波. 并行管道安全间距及保护措施研究[J]. 天然气与石油,2009,27(3):1-3. XIANG Bo. Study on safety distance and protection measures of parallel pipeline[J]. Natural Gas and Petroleum, 2009, 27(3):1-3.
[3]董绍华,王东营,费凡,等. 管道地区等级升级与公共安全风险管控[J]. 油气储运,2014,33(11):1164-1170. DONG Shaohua,WANG Dongying,FEI Fan,et al. Upgrading of pipeline area and risk control of public safety[J]. Oil & Gas Storage and Transportation, 2014, 33(11):1164-1170.
[4]PARVIZ M,AMINNEJAD B,FIOUZ A. Numerical simulation of dynamic response of water in buried pipeline under explosion[J]. Ksce Journal of Civil Engineering,2017,21(7):1-9.
[5]ADIBI O,AZADI A,Farhanieh B,et al. A parametric study on the effects of surface explosions on buried high pressure gas pipelines[J]. Engineering Solid Mechanics, 2017, 5(4), 225-244.
[6]VIVEK P,SITHARAM T G. The effect of spherical air blast on buried pipelines: A laboratory simulation study[J]. International Journal of Physical Modelling in Geotechnics, 2017:1-11.
[7]MOKHTARI M,NIA A A. A parametric study on the mechanical performance of buried X65 steel pipelines under subsurface detonation[J]. Archives of Civil & Mechanical Engineering, 2015, 15(3):668-679.
[8]文霞,姚安林,陈谦,等.隧道并行输气管道爆炸对邻管的冲击效应分析[J].中国安全生产科学技术,2017,13(1):156-162. WEN Xia, YAO Anlin, CHEN Qian, et al. Analysis on impact effect of gas pipeline explosion to adjacentpipeline for parallel pipeline in tunnel[J]. Journal of Safety Science and Technology, 2017,13(1):156-162.
[9]王德国. 基于管道爆炸数值模拟的架空天然气管道并行间距研究[J]. 中国石油大学学报(自然科学版), 2013, 37(5):175-180. WANG Deguo. Safe distance of overhead parallel pipeline calculated by numerical simulation of gas pipeline explosion[J]. Journal of China University of Petroleum(Edition of Natural Science),2013, 37(5):175-180.
[10]唐保金, 田贯三, 张增刚,等. 埋地燃气管道泄漏扩散模型[J]. 煤气与热力, 2009, 29(5):1-5. TANG Baojin,TIAN Guansan,ZHANG Zenggang,et al. Model for leakage and diffusion of buries gas pipeline[J]. Gas & Heat, 2009, 29(5):1-5.
[11]周兆明,万夫.气密封高压试验爆炸模拟分析[J].重庆理工大学学报(自然科学版),2013,27(9):106-109. ZHOU Zhaoming, WAN Fu. Numerical simulation of high pressure explosions with air seal test[J]. Journal of Chongqing University of Technology(Natural Science Edition), 2013,27(9):106-109.
[12]刘阳阳. 地下管道爆炸对埋地管网的毁伤数值模拟[D].南京:南京理工大学, 2016.
[13]张楠. 埋地管道爆炸对水泥混凝土道路的毁伤效应[D]. 南京:南京理工大学, 2014.
[14]梁博,蒋宏业,徐涛龙,等. 基于SPH-FEM耦合算法的埋地输气管道近场爆炸冲击动力响应[J]. 石油学报, 2017, 38(11):1326-1334. LIANG Bo, JIANG Hongye, XU Taolong, et al. Impact dynamic response of near-field explosion in buried gas pipeline based on SPH-FEM coupling algorithm[J].Acta Petrolei Sinica, 2017, 38(11):1326-1334.
[15]MOBARAKI B,VAGHEFI M. Numerical study of the depth and cross-sectional shape of tunnel under surface explosion[J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 2015, 47:114-122.
[16]倪玲英,郎健,陈良路.爆炸载荷作用下海底管道动力响应数值模拟[J].油气储运,2018,37(2):222-227. NI Lingying,LANG Jian, CHEN Lianglu. Numerical simulation on the dynamic response of submarine pipelines under blasting loading[J]. Oil & Gas Storage and Transportation,2018,37(2):222-227.
[17]WANG J. Simulation of landmine explosion using LS-Dyna 3D Software: benchmark work of simulation of explosion in soil and air [Z].DSTO-TR- 1168,Weapons Systems Dicision, Aeronautical and Maritime Research Laboratory, 2001.
[18]宁建国, 马天宝. 计算爆炸力学[M]. 北京:国防工业出版社,2015.
[19]KONESHWARAN S,THAMBIRATNAM D P,GALLAAGE C.Blast response of segmented bored tunnel using coupled SPH-FE method[J]. Structures, 2015, 2:58-71.
[20]穆朝民,任辉启,辛凯,等. 变埋深条件下土中爆炸成坑效应[J]. 解放军理工大学学报(自然科学版),2010,11(2):112-116. MU Zhaomin,REN Huiqi,XIN Kai,et al. Effects of crater formed by explosion in soils[J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2010, 11(2):112-116.
[21]WITLOX H W M. The HEGADAS model for ground-level heavy-gas dispersion—I. Steady-state model[J]. Atmospheric Environment, 1994, 28(18):2917-2932.
[22]吴晓丹. 含腐蚀缺陷输油管道的抗震安全性研究[D]. 大庆:东北石油大学,2012.

相似文献/References:

[1]文霞,姚安林,陈谦,等.隧道并行输气管道爆炸对邻管的冲击效应分析[J].中国安全生产科学技术,2017,13(1):156.[doi:10.11731/j.issn.1673-193x.2017.01.026]
 WEN Xia,YAO Anlin,CHENG Qian,et al.Analysis on impact effect of gas pipeline explosion to adjacent pipeline for parallel pipeline in tunnel[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(9):156.[doi:10.11731/j.issn.1673-193x.2017.01.026]

备注/Memo

备注/Memo:
收稿日期: 2018-07-10;数字出版日期:2018-09-03
基金项目: 国家科技支撑计划项目(2011BAK06B01-11);中国石油化工股份有限公司科研项目(35150000-14-ZC0607-0003) ;油气消防四川省重点实验室开放基金项目(YQXF201601)
作者简介: 田晓建,硕士研究生,主要研究方向为油气管道结构可靠性分析及油气管道完整性管理。
通信作者: 徐涛龙,博士,讲师,主要研究方向为管线力学及油气管道完整性管理。
更新日期/Last Update: 2018-10-09