|本期目录/Table of Contents|

[1]张晓,帅健.基于FITNET FFS模型的腐蚀管道失效概率敏感性分析[J].中国安全生产科学技术,2018,14(8):80-85.[doi:10.11731/j.issn.1673-193x.2018.08.013]
 ZHANG Xiao,SHUAI Jian.Sensitivity analysis on failure probability of corroded pipeline based on FITNET FFS model[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(8):80-85.[doi:10.11731/j.issn.1673-193x.2018.08.013]
点击复制

基于FITNET FFS模型的腐蚀管道失效概率敏感性分析
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
14
期数:
2018年8期
页码:
80-85
栏目:
职业安全卫生管理与技术
出版日期:
2018-08-31

文章信息/Info

Title:
Sensitivity analysis on failure probability of corroded pipeline based on FITNET FFS model
文章编号:
1673-193X(2018)-08-0080-06
作者:
张晓帅健
(中国石油大学(北京) 机械与储运工程学院,北京102249)
Author(s):
ZHANG Xiao SHUAI Jian
(School of Mechanical and Transportation Engineering, China University of Petroleum (Beijing), Beijing 102249, China)
关键词:
腐蚀管道可靠性FITNET FFS蒙特卡罗模拟敏感性分析
Keywords:
corroded pipelines reliability FITNET FFS Monte Carlo simulation sensitivity analysis
分类号:
X937
DOI:
10.11731/j.issn.1673-193x.2018.08.013
文献标志码:
A
摘要:
为了获取影响腐蚀管道失效概率的关键因素及敏感性规律,基于FITNET FFS模型,采用可靠性理论对国内某腐蚀管道的失效概率进行计算和分析。通过全寿命方法计算了腐蚀增长速率,从而得到了与时间相关的腐蚀管道损伤概率模型,并采用蒙特卡罗模拟算法进行求解,得出了不同年限下腐蚀管道的失效概率;采用变异系数法对各影响因素进行参数敏感性分析。研究结果表明:管道直径、壁厚及径向腐蚀速率的分散性对管道失效概率具有双向扰动作用,其机理在于随机变量的分散性和腐蚀速率同时影响失效概率的波动,开始阶段随机变量分散性起主导作用,两者在管道失效概率达到50%会趋于一个平衡状态,之后腐蚀速率起主要支配作用;另外,管材的抗拉强度对腐蚀管道失效概率的影响较屈服强度的影响更大,可靠性分析时采用只考虑屈服强度的强度模型将存在一定的局限性,建议同时考虑管材抗拉强度的影响。
Abstract:
In order to obtain the key factors and sensitivity laws that affect the failure probability of corroded pipeline, the failure probability of a domestic corroded pipeline was calculated and analyzed by using the reliability theory based on the FITNET FFS model. The growth rate of corrosion was calculated by means of the full life method, then the model on the damage probability of corroded pipeline with time related was obtained and solved by using the Monte Carlo simulation algorithm. The failure probability of corrosion pipeline under different years was obtained, and the parameter sensitivity of each influencing factor was analyzed by using the variation coefficient method. The results showed that the dispersibility of pipeline diameter, wall thickness and radial corrosion rate had the bidirectional disturbance effect on the failure probability of pipeline, and the essential mechanism of this phenomenon was revealed. The dispersibility of random variables and the corrosion rate influenced the fluctuation of failure probability at the same time, and in the initial stage, the dispersibility of random variables played a leading role, then they tended to an equilibrium state when the failure probability of pipeline reached 50%, while the corrosion rate played a dominant role after that. In addition, the influence of the tensile strength of pipeline material on the failure probability of corroded pipeline was greater than that of the yield strength, so adopting the strength model which only considered the yield strength in the reliability analysis had some limitations. It was suggested that the influence of the tensile strength of pipeline material should be considered at the same time.

参考文献/References:

[1]CALEYO F, GONZLEZ J L,HALLEN J M. A study on the reliability assessment methodology for pipelines with active corrosion defects[J]. International Journal of Pressure Vessels & Piping, 2002, 79(1):77-86.
[2]HASAN S,KHAN F,KENNY S. Probability assessment of burst limit state due to internal corrosion[J]. International Journal of Pressure Vessels & Piping, 2012, 89(1):48-58.
[3]帅义, 帅健, 苏丹丹. 企业级管道完整性管理体系构建模式[J]. 中国安全科学学报, 2016, 26(7):147-151. SHUAI Yi, SHUAI Jian, SU Dandan. Mode of constructing pipeline integrity management system for enterprises[J].China Safety Science Journal,2016, 26(7):147-151.
[4]NESSIM M,ZHOU W,ZHOU J, et al. Reliability based design and assessment for location-specific failure threats with application to natural gas pipelines[J]. Journal of Pressure Vessel Technology, 2006, 131(4):951-956.
[5]STEPHENS M, ROODSELAAR A V. Developments in reliability-based corrosion management and the significance of in-line inspection uncertainties[C]// International Pipeline Conference. 2008:639-648.
[6]PAPADRAKAKIS M,LAGAROS N D. Reliability-based structural optimization using neural networks and Monte Carlo simulation[J]. Computer Methods in Applied Mechanics & Engineering, 2002, 191(32):3491-3507.
[7]LI S X, ZENG H L, YU S R, et al. A method of probabilistic analysis for steel pipeline with correlated corrosion defects[J]. Corrosion Science, 2009, 51(12):3050-3056.
[8]QIAN G A,NIFFENEGGER M,LI S. Probabilistic analysis of pipelines with corrosion defects by using FITNET FFS procedure[J]. Corrosion Science, 2011, 53(3):855-861.
[9]American Society of Mechanical Engineers. Manual for determining the remaining strength of corroded pipelines:ASME B31G-2012[S]. American Society of Mechanical Engineers,2012.
[10]KIEFNER J F, VIETH P H. A modified criterion for evaluating the remaining strength of corroded pipe[J]. Materialsence, 1989.
[11]DNV.Corroded pipelines:Recommended Practice DNV RP-F101[S].DNV,2004.
[12]帅健, 张春娥, 陈福来. 非线性有限元法用于腐蚀管道失效压力预测[J]. 石油学报, 2008, 29(6):933-937. SHUAI Jian, ZHANG Chune, CHENG Fulai. Prediction of failure pressure in corroded pipelines based on non-linear finite element analysis[J]. Acta Petrolei Sinica, 2008, 29(6):933-937.
[13]帅义, 帅健, 刘朝阳. 腐蚀管道可靠性评价方法研究[J]. 石油科学通报, 2017, 2(2) :288-297. SHUAI Yi, SHUAI Jian, LIU Chaoyang. Research on the reliability methods of corroded pipeline[J]. Petroleum Science Bulletin, 2017,2(2):288-297.
[14]CICERO S, LACALLE R, CICERO R, et al. Assessment of local thin areas in a marine pipeline by using the FITNET FFS corrosion module[J]. International Journal of Pressure Vessels & Piping, 2009, 86(5):329-334.
[15]HADLEY I, KOCAK M. Overview of the European FITNET Fitness-for-Service procedure[C]// ASME 2008, International Conference on Offshore Mechanics and Arctic Engineering. 2008:447-455.
[16]孙春梅, 李琴, 黄志强,等. 基于Monte Carlo方法的腐蚀管道可靠性分析[J]. 油气储运, 2015, 34(8):811-816. SUN Chunmei, LI Qing, HUANG Zhiqiang. Reliability analysis of corroded pipelines based on Monte Carlo method[J]. Oil & Gas Storage and Transportation, 2015, 34(8):811-816.
[17]赵新伟, 罗金恒. 油气管道完整性评价技术[M]. 西安:陕西科学技术出版社,2010: 99-100.
[18]LEON D D, MACAS O F. Effect of spatial correlation on the failure probability of pipelines under corrosion[J]. International Journal of Pressure Vessels & Piping, 2005, 82(2):123-128.
[19]SANTOSH A,VINOD G,SHRIVASTAVA O P,et al. Reliability analysis of pipelines carrying H2S for risk based inspection of heavy water plants[J]. Reliability Engineering & System Safety,2006,91(2):163-170.
[20]ZHOU W. System reliability of corroding pipelines[J]. International Journal of Pressure Vessels & Piping,2010,87(10):587-595.

相似文献/References:

[1]陈勇刚,杨晓强.基于模糊灰色关联的航空公司机队可靠性指标的优选[J].中国安全生产科学技术,2010,6(3):101.
 CHEN Yong-gang,YANG Xiao-qiang.Optimization for index of airline fleet reliability based on fuzzy grey association[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2010,6(8):101.
[2]邢志祥,陈露,诸德志.火灾探测报警系统及其可靠性研究[J].中国安全生产科学技术,2012,8(3):151.
 XING Zhi xiang,CHEN Lu,CHU De zhi.The research of fire detection alarming system and its reliability[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2012,8(8):151.
[3]刘太元,胡夏琦,郝伟修,等.RAM分析技术在海上油气田建设项目中的应用研究[J].中国安全生产科学技术,2013,9(1):75.
 LIU Tai yuan,HU Xia qi,HAO Wei xiu,et al.Applications of RAM analysis in offshore oil and gas development project[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(8):75.
[4]薛鲁宁,樊建春,张来斌.基于马尔可夫方法的水下防喷器可靠性研究[J].中国安全生产科学技术,2012,8(10):72.
 XUE Lu ning,FAN Jian chun,ZHANG Lai bin.Research on reliability of subsea blowout preventer based on Markov method[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2012,8(8):72.
[5]鲁守东,周国华,孙景冬.基于MMESE模型的高速铁路运营系统可靠性研究* ——以“723”甬温线动车事故为例[J].中国安全生产科学技术,2013,9(3):19.[doi:10.11731/j.issn.1673-193x.2013.03.04]
 LU Shou dong,ZHOU Guo hua,SUN Jing dong.Study on operation system reliability of highspeed railway based on MMESE model—a case of "723" YongWen line accident[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(8):19.[doi:10.11731/j.issn.1673-193x.2013.03.04]
[6]耿瑞雄,常双君.概率统计在矿井通风系统可靠性评估中的应用[J].中国安全生产科学技术,2014,10(3):168.[doi:10.11731/j.issn.1673-193x.2014.03.029]
 GENG Rui xiong,CHANG Shuang jun.Application of probability and statistics in assessing the reliability of mine ventilation system[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(8):168.[doi:10.11731/j.issn.1673-193x.2014.03.029]
[7]孙 平,朱 伟,邢 涛.城市地下管线系统可靠性分析 *[J].中国安全生产科学技术,2009,5(4):191.
 SUN Ping,ZHU Wei,XING Tao.Reliability analysis of urban underground pipeline system[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2009,5(8):191.
[8]刘书杰,李相方,周悦,等.基于贝叶斯—LOPA方法的深水钻井安全屏障可靠性分析[J].中国安全生产科学技术,2014,10(9):187.[doi:10.11731/j.issn.1673-193x.2014.09.032]
 LIU Shu-jie,LI Xiang-fang,ZHOU Yue,et al.Reliability analysis on safety barriers of deep-water drilling based on Bayesian-LOPA method[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(8):187.[doi:10.11731/j.issn.1673-193x.2014.09.032]
[9]刘君强,张马兰,左洪福,等.基于改进贝叶斯神经网络的航空公司安全敏感性分析[J].中国安全生产科学技术,2014,10(11):151.[doi:10.11731/j.issn.1673-193x.2014.11.026]
 LIU Jun-qiang,ZHANG Ma-lan,ZUO Hong-fu,et al.Analysis on safety sensitivity of airline companies based on improved Bayesian neural network[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(8):151.[doi:10.11731/j.issn.1673-193x.2014.11.026]
[10]黄志强,谭智勇,谢豆,等.腐蚀管道评价标准ASME B31G-2009和SY/T6151-2009对比[J].中国安全生产科学技术,2015,11(4):116.[doi:10.11731/j.issn.1673-193X.2015.04.019]
 HUANG Zhi-qiang,TAN Zhi-yong,XIE Dou,et al.Contrastive study on evaluation standards ASME B31G-2009 and SY/T6151-2009 for pipeline corrosion[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2015,11(8):116.[doi:10.11731/j.issn.1673-193X.2015.04.019]

备注/Memo

备注/Memo:
“十二五”国家科技支撑计划课题( 2015BAK16B00)
更新日期/Last Update: 2018-09-03