|本期目录/Table of Contents|

[1]韩晓明,李佳良.瓦斯抽采钻孔反循环气力排屑数值模拟[J].中国安全生产科学技术,2018,14(8):68-73.[doi:10.11731/j.issn.1673-193x.2018.08.011]
 HAN Xiaoming,LI Jialiang.Numerical simulation on reverse circulation pneumatic chip removal in gas drainage borehole[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(8):68-73.[doi:10.11731/j.issn.1673-193x.2018.08.011]
点击复制

瓦斯抽采钻孔反循环气力排屑数值模拟
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
14
期数:
2018年8期
页码:
68-73
栏目:
学术论著
出版日期:
2018-08-31

文章信息/Info

Title:
Numerical simulation on reverse circulation pneumatic chip removal in gas drainage borehole
文章编号:
1673-193X(2018)-08-0068-06
作者:
韩晓明李佳良
(河南理工大学 机械与动力工程学院,河南 焦作454000)
Author(s):
HAN Xiaoming LI Jialiang
(School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo Henan 454000, China)
关键词:
CFD-DEM瓦斯抽采反循环气力排屑压降
Keywords:
CFD-DEM gas drainage reverse circulation pneumatic chip removal pressure drop
分类号:
X936
DOI:
10.11731/j.issn.1673-193x.2018.08.011
文献标志码:
A
摘要:
反循环气力排屑是顺层钻孔的新技术,可以提高瓦斯抽采钻孔的成孔深度与成孔率,采用CFD-DEM耦合方法对瓦斯抽采钻孔反循环气力排屑过程进行数值模拟,研究了排屑气速、煤屑生成量对气力排屑性能和气力排屑系统压降的影响。研究结果表明:排屑气速较低时,煤屑在重力的作用下在钻杆内堆积,易导致钻杆堵塞,为保证顺利排屑,需要较大的排屑气速;随着煤屑生成量的增大,对气力排屑性能影响不大,但钻杆内煤屑的体积分数增大,煤屑-煤屑,煤屑-钻杆之间的碰撞加剧;气力排屑系统的压降与排屑气速、煤屑生成量均呈正相关,综合考虑能耗因素,在保证顺利排屑的前提下,应选择合适的排屑气速。
Abstract:
The reverse circulation pneumatic chip removal is a new technology of borehole along coal seam, which can improve the holeforming depth and holeforming ratio of gas drainage borehole. The numerical simulation on the process of reverse circulation pneumatic chip removal in the gas drainage borehole was carried out by using the CFD-DEM coupling method, and the influence of gas velocity of chip removal and generation amount of coal chip on the performance of pneumatic chip removal and the pressure drop of pneumatic chip removal system was studied. The results showed that the coal chip accumulated in the drill pipe under the effect of gravity when the gas velocity of chip removal was lower, which caused the blocking of drill pipe, and a higher gas velocity of chip removal was needed to ensure the smooth chip removal. The increase of the generation amount of coal chip had little effect on the performance of pneumatic chip removal, but the volume fraction of coal chip in the drill pipe increased, and the collision between coal chip and coal chip and between coal chip and drill pipe intensified. The pressure drop of pneumatic chip removal system was positively correlated with the gas velocity of chip removal and generation amount of coal chip, and considering the energy consumption factor comprehensively, the appropriate gas velocity of chip removal should be selected under the premise of ensuring the smooth chip removal.

参考文献/References:

[1]韩晓明, 张龙列, 刘瑜, 等. 松软突出煤层水平钻孔反循环气力排屑机理[J]. 中国安全生产科学技术, 2015, 11(5): 26-31. HAN Xiaoming, ZHANG Longlie, LIU Yu, et al. Chip removal mechanism by air reverse circulation during horizontal drilling in soft outburst coal seam[J]. Journal of Safety Science and Technology, 2015, 11(5): 26-31.
[2]QU P, SHEN R C, LI F, et al. Time delay effect due to pore pressure changes and existence of cleats on borehole stability in coal seam[J]. International Journal of Coal Geology, 2011,85(2): 212-218.
[3]王振, 梁运培, 金洪伟. 防突钻孔失稳的力学条件分析[J]. 采矿与安全工程学报, 2008, 25(4): 444-448. WANG Zhen, LIANG Yunpei, JIN Hongwei. Analysis of mechanics conditions for instability of outburst to preventing borehole[J]. Journal of Mining & Safety Engineering, 2008, 25(4): 444-448.
[4]乔慧丽, 陈鱼. 开闭式反循环钻头的结构设计与工作原理[J]. 探矿工程, 2014, 41(6): 53-55. QIAO Huili, CHEN Yu. Configuration design and working principles of open-closed reverse circulation bit[J]. Exploration Engineering, 2014, 41(6): 53-55.
[5]韩晓明. 全封闭风力排渣抽放瓦斯深孔钻进系统及方法: 中国, CN103352718A[P]. 2013-10-16.
[6]张辉, 程利兴, 常建超. 煤矿巷道底板锚索孔反循环钻进试验研究[J]. 煤炭科学技术, 2015, 43(8): 55-59. ZHANG Hui, CHENG Lixing, CHANG Jianchao. Experiment study on reverse circulation drilling of anchor borehole in floor of mine roadway[J]. Coal Science and Technology, 2015, 43(8): 55-59.
[7]张宏图, 魏建平, 王云刚, 等. 煤层瓦斯含量测定定点取样方法研究进展[J]. 中国安全生产科学技术, 2016, 12(1): 186-192. ZHANG Hongtu, WEI Jianping, WANG Yungang, et al. Sampling methods for coal bed gas content direct determination[J]. Journal of Safety Science and Technology, 2016, 12(1): 186-192.
[8]温志辉, 张宏图, 魏建平, 等. 负压定点取样煤层瓦斯含量测定损失量推算方法[J]. 中国矿业大学学报, 2017, 46(4): 776-782. WEN Zhihui, ZHANG Hongtu, WEI Jianping, et al. Gas loss calculation method for gas content determination by sampling method based on negative pneumatic conveying[J]. Journal of China University of Mining & Technology, 2017, 46(4): 776-782.
[9]魏建平, 李辉, 王云刚. 瓦斯含量定点取样方法和装置: 中国, CN103225484A[P]. 2013-07-31.
[10]WEI J P, ZHANG H T, WANG Y G, et al. The gas-solid flow characteristics of cyclones[J]. Powder Technology, 2017, 308: 178-192.
[11]EBRAHIMI M, CRAPPER M, OOI J Y. Experimental and simulation studies of dilute horizontal pneumatic conveying[J]. Particulate Science and Technology, 2017, 32(2): 206-213.
[12]ZHOU J W, LIU Y, DU C L, et al. Numerical study of coarse coal particle breakage in pneumatic conveying[J]. Particuology, 2018, 38(6): 204-214.
[13]胡国明. 颗粒系统的离散元素法分析仿真-离散元素法的工业应用于EDEM软件简介[M]. 武汉: 武汉理工大学出版社, 2010: 7-21.
[14]杜俊, 胡国明, 方自强, 等. 弯管稀相气力输送CFD-DEM法数值模拟[J]. 国防科技大学学报, 2014, 36(4): 134-139. DU Jun, HU Guoming, FANG Ziqiang, et al. Simulation of dilute pneumatic conveying with bends by CFD-DEM[J]. Journal of National University of Defense Technology, 2014, 36(4): 134-139.
[15]LEE L Y, QUEK T Y, DENG R S, et al. Pneumatic transport of granular materials through a 90°bend[J]. Chemical Engineering Science, 2004 , 59 (21) : 4637- 4651.

相似文献/References:

[1]李英明,杨明东,付永刚.U型工作面上隅角埋管瓦斯抽采数值模拟研究[J].中国安全生产科学技术,2013,9(12):16.[doi:10.11731/j.issn.1673-193x.2013.12.002]
 LI Ying-ming,YANG Ming-dong,FU Yong-gang.Numerical simulation on gas drainage with buried pipe in upper corner of U\|type working face[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(8):16.[doi:10.11731/j.issn.1673-193x.2013.12.002]
[2]姜二龙,刘健,蔡文鹏,等.深孔预裂爆破技术在低透气性回采工作面中的试验研究[J].中国安全生产科学技术,2013,9(7):20.[doi:10.11731/j.issn.1673-193x.2013.07.003]
 JIANG Er long,LIU Jian,CAI Wen peng,et al.Experiment study on deep hole pre-splitting blasting technology in low permeability outburst working face[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(8):20.[doi:10.11731/j.issn.1673-193x.2013.07.003]
[3]蔡文鹏,刘健,孙东生,等.顶板走向高位钻孔瓦斯抽采技术的研究及应用[J].中国安全生产科学技术,2013,9(12):35.[doi:10.11731/j.issn.1673-193x.2013.12.005]
 CAI Wen peng,LIU Jian,SUN Dong sheng,et al.Research and application of gas drainage technique with highlocated drilling method along roof strike[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(8):35.[doi:10.11731/j.issn.1673-193x.2013.12.005]
[4]孙东生,刘健,蔡文鹏,等.高瓦斯低透气性煤层水力压裂技术的试验研究[J].中国安全生产科学技术,2013,9(9):49.[doi:10.11731/j.issn.1673-193x.2013.09.009]
 SUN Dong sheng,LIU Jian,CAI Wen peng,et al.Experimental study on hydraulic fracturing technology in high gas and low permeability coal seam[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(8):49.[doi:10.11731/j.issn.1673-193x.2013.09.009]
[5]孙晓梅,吕品,刘琛琛,等.基于CFD及正交试验的工作面流场参数优化[J].中国安全生产科学技术,2014,10(4):54.[doi:10.11731/j.issn.1673-193x.2014.04.009]
 SUN Xiao mei,LV Pin,LIU Chen chen,et al.Optimization of flow field parameters in working face based on orthogonal experiment and CFD[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(8):54.[doi:10.11731/j.issn.1673-193x.2014.04.009]
[6]吴爱军,王巧莉.薛湖矿二2煤顺层钻孔瓦斯抽放的数值模拟与分析[J].中国安全生产科学技术,2014,10(6):90.[doi:10.11731/j.issn.1673-193x.2014.06.014]
 WU Ai jun,WANG Qiao li.Numerical simulation and analysis on gas extraction with bedding drillings in the 22 coal seam of Xuehu Mine[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(8):90.[doi:10.11731/j.issn.1673-193x.2014.06.014]
[7]杨明,闫潮,刘亚军.斜交高位钻孔抽采空区瓦斯设计及优化研究[J].中国安全生产科学技术,2014,10(7):117.[doi:10.11731/j.issn.1673-193x.2014.07.021]
 YANG Ming,YAN Chao,LIU Ya jun.Research and optimization of gas extraction in gob by skew high level boreholes[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(8):117.[doi:10.11731/j.issn.1673-193x.2014.07.021]
[8]戎立帆,柏发松,车志飞.下向穿层瓦斯抽采钻孔新型封孔方法及应用[J].中国安全生产科学技术,2014,10(8):64.[doi:10.11731/j.issn.1673-193x.2014.08.011]
 RONG Li-fan,BAI Fa-song,et al.New hole sealing method and application for gas extraction by downward cross-layer drilling[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(8):64.[doi:10.11731/j.issn.1673-193x.2014.08.011]
[9]徐雪战,孟祥瑞,赵光明,等.基于三维可视化的卸压区瓦斯穿层抽采仿真研究[J].中国安全生产科学技术,2014,10(9):77.[doi:10.11731/j.issn.1673-193x.2014.09.013]
 XU Xue-zhan,MENG Xiang-rui,ZHAO Guang-ming,et al.Virtual simulation of gas drainage drilling through layers in stress-relaxation zone based on three-dimensional visualization[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(8):77.[doi:10.11731/j.issn.1673-193x.2014.09.013]
[10]王文,李化敏,高保彬,等.远距离保护层开采煤层渗透特性及瓦斯抽采技术研究[J].中国安全生产科学技术,2014,10(11):84.[doi:10.11731/j.issn.1673-193x.2014.11.014]
 WANG Wen,LI Hua-min,GAO Bao-bin,et al.Study on permeability characteristic of coal seam and gas extractiontechniques in coal mining with long distance protection coal seam[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(8):84.[doi:10.11731/j.issn.1673-193x.2014.11.014]

备注/Memo

备注/Memo:
河南省自然科学基金项目(182300410156);河南省高等学校青年骨干教师计划项目(2015GGJS-067);河南省科技攻关计划项目(162102210229)
更新日期/Last Update: 2018-09-03