|本期目录/Table of Contents|

[1]张晓,帅健.侧向载荷作用下X90管道局部屈曲研究[J].中国安全生产科学技术,2018,14(7):135-140.[doi:10.11731/j.issn.1673-193x.2018.07.020]
 ZHANG Xiao,SHUAI Jian.Research on the local buckling of X90 pipeline under lateral load[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(7):135-140.[doi:10.11731/j.issn.1673-193x.2018.07.020]
点击复制

侧向载荷作用下X90管道局部屈曲研究
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
14
期数:
2018年7期
页码:
135-140
栏目:
职业安全卫生管理与技术
出版日期:
2018-07-31

文章信息/Info

Title:
Research on the local buckling of X90 pipeline under lateral load
文章编号:
1673-193X(2018)-07-0135-06
作者:
张晓帅健
(中国石油大学(北京) 机械与储运工程学院,北京102249)
Author(s):
ZHANG XiaoSHUAI Jian
(College of Mechanical and Transportation Engineering, China University of PetroleumBeijing, Beijing 102249,China)
关键词:
X90非线性有限元屈曲临界载荷
Keywords:
X90nonlinear finite element analysisbucklingcritical load
分类号:
X937
DOI:
10.11731/j.issn.1673-193x.2018.07.020
文献标志码:
A
摘要:
为了获取X90高强度管道局部屈曲临界载荷随管道尺寸、内压及管材参数的变化规律,基于ANSYS建立了侧向载荷作用下X90管道局部屈曲有限元数值模型,分析了X90管道局部非线性屈曲模态及特点,探讨了管道参数及管材性能参数对屈曲临界载荷的影响。研究结果表明:管道屈曲临界载荷随管径及壁厚的增大而增大;随内压的增大呈现先增大后减小的趋势;随材料幂硬化指数的增大而减小,同时还会受到环向应力的影响,环向应力越大,其随幂硬化指数减小的速率越快;管材屈服强度的提高可以在一定程度上提高X90管道的抗屈曲能力。研究结果可为X90管道的设计提供理论基础和参考。
Abstract:
In order to provides theoretical basis and reference for the design of X90 pipeline , the sensitive parameters’ effects on the buckling critical load of X90 pipeline such as the pipe size, internal pressure and material parameters need to obtain. A local buckling model of X90 pipeline under the lateral load was established based on ANSYS finite element simulation method, analysed its local nonlinear buckling mode and behavior, and studied the effects of pipe parameters and material parameters on the buckling critical load . The results show that the critical load of pipeline buckling increases with the increase of pipe diameter and wall thickness; With the increase of internal pressure, the critical load increases at the initial period and then decrease; and it decreases with the increase of the yield ratio of the material, and it is also affected by the cyclic stress, and the greater the stress is, the faster it decreases. The increase of yield strength of pipeline can improve the antibuckling ability of X90 pipeline to a certain extent.

参考文献/References:

[1]帅健. 管道及储罐强度设计[M]. 北京: 石油工业出版社,2016: 121-131.
[2]WANG Y Z, ZHOU L C. Spatial distribution and mechanism of geological hazards along the oil pipeline planned in western China[J]. Engineering Geology 1999, 51(3): 195-201.
[3]BRAUN J, MAJOR G, WEST D O, et al. Geologic hazards evaluation boosts risk-management program for Western U.S. pipeline[J].Oil & Gas Journal, 1998, 96(45):73-79.
[4]CHEN H, JI L, GONG S, et al. Deformation behavior prediction of X80 steel line pipe and implication on high strain pipe specification[C]// International Pipeline Conference. 2008:639-648..
[5]KANG K B, YOO J Y, AHN S S, et al. Buckling behavior of API- X80 linepipe[C]//The seventeenth International Offshore and Polar Engineering Conference,Lisbon,Portugal,July 1-6,2007:53-59.
[6]帅义, 帅健, 苏丹丹. 企业级管道完整性管理体系构建模式[J]. 中国安全科学学报, 2016, 26(7):147-151.SHUAI Yi, SHUAI Jian, SU Dandan. Mode of constructing pipeline integrity management system for enterprises[J].China Safety Science Journal,2016, 26(7):147-151.
[7]王国丽, 管伟, 韩景宽,等. X100、X90管线钢管在高压输气管道中应用的方案研究[J]. 石油规划设计,2015, 26(2):1-6.WANG Guoli, GUAN Wei, HAN Jingkuan, et al.Application research on XI00 and X90 steel in the high pressure gas pipeline[J]. Petroleum Planning & Engineering, 2015, 26(2):1-6.
[8]MOHITPOUR M,GOLSHAN H,MURRAY A.Pipeline design and construction:a practical approach[M].New York :American Society of Mechanical Engineers,2007.
[9]DOREY A B, MURRAY D W, CHENG J J R. Material property effects on critical buckling strains in energy pipe lines[C]// International Pipeline Conference, 2002:475-484.
[10]SUZUKI N, MURAOKA R, GLOVER A, et al. Local buckling behavior of X100 linepipes[C]// ASME 2003, International Conference on Offshore Mechanics and Arctic Engineering, 2003.
[11]DAMA E, KARAMANOS S A, GRESNIGT A M. Failure of locally buckled pipelines[J]. Journal of Pressure Vessel Technology, 2007, 129(2):272-279.
[12]ZHOU Z L, MURRAY D W. Analysis of postbuckling behavior of line pipe subjected to combined loads[J]. International Journal of Solids and Structures, 1995, 32(20): 3015-3036.
[13]GONG S F, NI X Y, YUAN L, et al. Buckling response of offshore pipelines under combined tension and bending[J]. Structural Engineering & Mechanics, 2012, 41(6): 805-822.
[14]ZIMMERMAN T, TIMMS C, XIE J, et al. Buckling resistance of large diameter spiral welded linepipe[C]// International Pipeline Conference, 2004:365-373.
[15]BRUSCHI R, MONT P, BOLZONI G, et al. Finite element method as numerical laboratory for analyzing pipeline response under internal pressure, axial load, bending moment.[C]// International Conference on Offshore Mechanics and Arctic Engineering, 1996:389-401.
[16]KUMAR S, BHARGAVA P K. Parameters affecting the buckling and post-Buckling behaviour of high strength pipelines[C]// ASME 2009, International Conference on Ocean, Offshore and Arctic Engineering, 2009:40-47.
[17]FATEMI A, KENNY S, SEN M, et al. Investigations on the local buckling response of high strength linepipe[C]// International Pipeline Conference, 2008:649-656.
[18]全恺,周晴莎.输气管道在走滑断层作用下的屈曲有限元研究[J]. 应用力学学报, 2017, 34(4):767-773. QUAN Kai, ZHOU Qingsha. Finite element study of buckling response of gas pipeline under strike-slip fault movements[J].Chinese Journal of Applied Mechanics,2017,34(4):767-773.
[19]王鹏, 王峰会. 内压和侧压作用下管道的屈曲分析[J]. 石油矿场机械,2008,37(8):18-21.WANG Peng,WANG Fenghui. Analysis of buckling pipelines due to internal pressure and lateral pressure[J]. Oil Field Equipment, 2008, 37(8): 18-21.
[20]蔡克, 杨锋平, 罗金恒. 天然气管道的屈曲变形模拟[J]. 油气储运, 2013, 32(4):402-405.CAI Ke, YANG Fengping, LUO Jinheng. Simulation on buckling deformation of natural gas pipeline[J]. Oil & Gas Storage and Transportation, 2013, 32(4): 402-405.

相似文献/References:

备注/Memo

备注/Memo:
“十二五”国家科技支撑计划课题(2015BAK16B00)
更新日期/Last Update: 2018-08-09